

Bauvorhaben:

110-kV-Freileitung Weißenburg - Preith Ersatzneubau Ltg.-Trasse: T014

Abschnitt: 1
Weißenburg - Kaldorf Mast 150 - Mast 88 Ltg. Trasse: T014

Immissionsbericht zu elektrischen und magnetischen Feldern nach 26. BlmSchV mit Minimierungsbetrachtung nach 26. BlmSchVVwV

Unterlage 03-04-01

Land Bayern / Regierungsbezirk Mittelfranken / Landkreis Weißenburg-Gunzenhausen

N-ERGIE Netz GmbH

Sandreuthstraße 21 90441 Nürnberg

Bearbeitung: SPIE SAG GmbH

HV | CeGIT

Landshuter Straße 65 84030 Ergolding

Lucia Wandra

Vorhabenträger:

N-ERGIE Netz GmbH Netzplanung NNG-NP-GS Sandreuthstraße 21 90441 Nürnberg

Anlagen: 1 - 4

Erstellt durch:

Inhalt

ln	halt		2
Αŀ	bbildu	ungsverzeichnis	3
Τa	abelle	enverzeichnis	3
1	Ei	inleitung	4
2	Al	llgemeine technische Grundlagen und Hintergründe	5
	2.1	Elektrische und magnetische Felder	5
	2.2	Trassenkonstellationen Allgemeines	6
3	R	echtliche Grundlagen und Anforderungen	7
	3.1	Anforderungen zum Schutz vor schädlichen Umwelteinwirkungen (26. BImSchV)	7
	3.2	Anforderungen zur Vorsorge gemäß 26. BlmSchVVwV	9
4	Tr	rassenkonfiguration und Berechnungsparameter	11
5	В	erücksichtigung von Immissionsbeiträgen anderer Anlagen	13
6	N	achweismethodik gem. 26.BImSchV	13
	6.1	Ermittlung der maßgeblichen Immissionsorte gem. 26. BImSchV	14
	6.2	Berechnung der Immissionen an maßgeblichen Immissionsorten	15
7	В	erechnungsgrundlagen	16
8	Pı	rüfung des Minimierungspotenzial gem. 26. BImSchVVwV	17
	8.1	Vorprüfung nach Nr. 3.2.1	17
	8.2	Berechnung der Immissionen im Einwirkungsbereich	19
	8.3	Darstellung der Ergebnisse im Einwirkungsbereich	20
	8.4	Ermittlung der Minimierungsmaßnahmen nach Nr. 3.2.2	28
9	Ζι	usammenfassung und Fazit	30
1()	Literaturverzeichnis	31
11	1	Verzeichnis der Anlagen	32

Stand: 22.11.2024 Seite **2** von **32**

Abbildungsverzeichnis

Abbildung 1: Schemazeichnung des verwendeten Masttyps	6
Abbildung 2: Bewertungsabstand (Quelle 26. BlmSchVVwV)	10
Abbildung 3: Einwirkungsbereich (Quelle 26. BlmSchVVwV)	10
Tabellenverzeichnis	
Tabelle 1: Berechnungsparameter Mast 150- Mast 88 zur Ermittlung der Immissionen	11
Tabelle 2: Phasenbelegung	11
Tabelle 3: Maßgebliche Immissionsorte im Einwirkungsbereich der Anlage	14
Tabelle 4: Maximal zu erwartende Werte der elektrischen Feldstärke und magnetische Flussdichte	an
maßgeblichen Immissionsorten	15
Tabelle 5: Berechnungsgrundlagen	16
Tabelle 6: Maßgebliche Minimierungsorte im Einwirkungsbereich	18
Tabelle 7: Maximal zu erwartende Werte der elektrischen Feldstärke und magnetische Flussdichte	im ;
Einwirkungsbereich an relevanten Bezugspunkten	19

Stand: 22.11.2024 Seite **3** von **32**

1 Einleitung

Als Eigentümer und Betreiber der 110-kV-Freileitung T014 Weißenburg-Preith, steht die N-ERGIE Netz GmbH in der Pflicht, die Hochspannungsfreileitung auf zukünftige Herausforderungen der Energieübertragung vorzubereiten und somit die mittel- und langfristige Versorgungssicherheit zu gewährleisten. Die im Jahr 1954 errichtete Leitung wird den oben genannten Anforderungen nicht mehr gerecht. Hierbei sind insbesondere die geplanten Einspeisungen aus erneuerbaren Energien (v. a. Windenergie) zu nennen. Dies betrifft auf der Leitung die Umspannwerke Oberhochstatt und Kaldorf.

Der hier vorliegende Antrag umfasst den im Regierungsbezirk Mittelfranken befindlichen Leitungsabschnitt zwischen den Masten 150 (Anschlussleitung T015 Winterschneidbach-Weißenburg) und dem Masten 88 (110-kV-Freileitung Weißenburg-Preith, T014), die sich im Landkreis Weißenburg befinden. Das stellt den ersten Teil der in zwei Abschnitten geplanten Gesamtertüchtigung der T014 dar. Dieser beinhaltet 87 Maste auf einer Trassenlänge von 17 km, die standortgleich ausgetauscht werden.

Durch die Maßnahme werden die gegenwärtig bestehenden, Einebene Stahlgittermaste durch neue Stahlvollwandmaste mit ebenfalls einer Traverse ersetzt. Die neuen Maste werden so erhöht, dass ein Abstand von mindestens 10 m zur Geländeoberkante bei einer Leiterseilendtemperatur von 80°C künftig eingehalten wird. Zugleich ist der Austausch der Leiterseile und des Erdseils vorgesehen.

Aktuell führt die T014 auf der linken Traversenseite einen Stromkreis, der aus drei Phasen mit jeweils einem Leiterseil besteht. Im Rahmen der Maßnahme wird ein zweiter Stromkreis auf der gegenwärtig nicht belegten Traversenseite (in Leitungsrichtung betrachtet rechts) aufgelegt. Zusätzlich wird sich nach Abschluss der Maßnahme jede Phase aus einem Zweierbündel zusammensetzen. Infolgedessen wird die Leitung nach Fertigstellung die 6-fache Strommenge übertragen können.

(Näheres siehe Erläuterungsbericht)

Stand: 22.11.2024 Seite **4** von **32**

2 Allgemeine technische Grundlagen und Hintergründe

2.1 Elektrische und magnetische Felder

Freileitungen erzeugen aufgrund der unter Spannung stehenden und Strom führenden Leiter, elektrische und magnetische Felder. Es handelt sich um Wechselfelder mit einer Frequenz von 50 Hertz (Hz). Diese Frequenz ist dem so genannten Niederfrequenzbereich zugeordnet.

Ursache des elektrischen Feldes ist die Spannung. Wie bereits einleitend erwähnt, resultiert das elektrische Feld der Freileitung aus grundlegenden physikalischen Gesetzen. Für einen einzelnen Leiter können die elektrischen Feldlinien als sternförmig vom Leiter abgehende Linien veranschaulicht werden. Die elektrische Feldstärke wird in Volt pro Meter (V/m) oder Kilovolt pro Meter (kV/m) angegeben. Der Betrag hängt von der Höhe der Spannung sowie der Konfiguration der Leiter am Mast, den Abständen zum Boden, zu geerdeten Bauteilen und dem Vorhandensein von Erdseilen und der Phasenanordnung ab. Aufgrund der annähernd konstanten Betriebsspannung variiert die elektrische Feldstärke kaum. Lediglich der temperaturabhängige Durchhang und der sich daraus ergebende Bodenabstand der Leiter haben einen Einfluss auf die bodennahen Werte der elektrischen Feldstärke.

Ursache für das magnetische Feld ist der elektrische Strom. Die magnetische Feldstärke wird in Ampere pro Meter (A/m) angegeben. Bei niederfrequenten Feldern wird als zu bewertende Größe die magnetische Flussdichte herangezogen, die bei Vakuum und näherungsweise auch bei Luft ausschließlich über eine universelle Konstante mit der magnetischen Feldstärke verknüpft ist. Die Maßeinheit der magnetischen Flussdichte ist Tesla (T). Sie wird zweckmäßigerweise in Bruchteilen als Mikrotesla (µT) angegeben. Je größer die Stromstärke, desto höher ist auch die magnetische Flussdichte (lineare Abhängigkeit). Da die Stromstärke stark von der Netzbelastung abhängt, ergeben sich tages- und jahreszeitliche Schwankungen der magnetischen Flussdichte. Wie auch beim elektrischen Feld hängt die magnetische Flussdichte von der Ausführung und der räumlichen Anordnung der Leiter und Erdseile am Mast, der Phasenanordnung, sowie den Abständen zum Boden und zu geerdeten Bauteilen ab. Die magnetische Flussdichte verändert sich zusätzlich durch die vom Leiterstrom abhängige Leitertemperatur und dem daraus resultierenden Leiterdurchhang und Bodenabstand.

Die größten Werte der elektrischen und magnetischen Felder treten direkt unterhalb der Freileitungen zwischen den Masten am Ort der größten Bodenannäherung der Leiter auf. Die Stärke der Felder nimmt mit zunehmender seitlicher Entfernung von der Leitung schnell ab. Elektrische Felder werden durch elektrisch leitfähige Materialien, z.B. durch bauliche Strukturen oder Bewuchs, gut abgeschirmt. Magnetfelder hingegen können anorganische und organische Stoffe nahezu ungestört durchdringen.

Stand: 22.11.2024 Seite 5 von 32

2.2 Trassenkonstellationen Allgemeines

Bei den oben genannten Einflussgrößen auf die Feldstärke von elektrischen und magnetischen Feldern gibt es einige Parameter, die als konstant anzusehen sind. Dies sind insbesondere die elektrischen Betriebsparameter der einzelnen Stromkreise (z. B. Spannung). Andere Parameter, wie z. B die Systemanzahl, die Mastkopfgeometrie, die Phasenanordnung und die Erdseilkonfiguration, können dagegen auf einer Leitung entlang des Trassenverlaufs variieren, was zu verschiedenen elektrischen Konfigurationen führt. Diese Parameter werden im Folgenden näher erläutert.

Mastkopfgeometrie

Die Mastkopfgeometrie wird durch die Anzahl der Systeme und technischen oder auch historischen Aspekte bestimmt.

Bei der 110-kV-Freileitung Weißenburg-Preith werden Einebene Stahlvollwandmasten, 2-systemig eingesetzt (siehe *Abbildung 1*). Die Leiterseile sind Stahl-Aluminium-Verbundseile vom Typ AL/ST 380/50, welche eine Stromstärke bis zu 840 Ampere übertragen können.

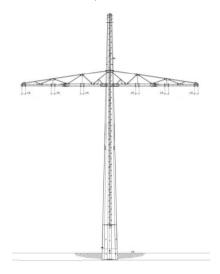


Abbildung 1: Schemazeichnung des verwendeten Masttyps

Phasenanordnung

Die Anordnung der Außenleiter bzw. Phasen am Mast hat Einfluss auf die maximalen bodennahen Feldstärken. Bei einem Wechsel der Phasenanordnungen (Verdrillung oder Phasentausch) können sich die Ausprägungen der elektrischen Feldstärke sowie der magnetischen Flussdichte, insbesondere im Nahbereich der Anlage verändern. Daher ist die konkrete Phasenanordnung bei der Prüfung der durch die Leitung hervorgerufenen Immissionen zu berücksichtigen.

Stand: 22.11.2024 Seite 6 von 32

3 Rechtliche Grundlagen und Anforderungen

Elektrische Freileitungen erzeugen aufgrund der unter Spannung stehenden und Strom führenden Leiter elektrische und magnetische Felder. Es handelt sich hierbei um Wechselfelder mit einer Frequenz von 50 Hertz (Hz). Diese Frequenz ist dem Niederfrequenzbereich zugeordnet. Die physikalischen Grundlagen der elektrischen Feldstärke und der magnetischen Flussdichte sind in dem Kapitel 5.1 näher erläutert.

Gemäß §22 Abs. 1 der BImSchG sind nicht genehmigungsbedürftige Anlagen so zu errichten und zu betreiben, dass schädliche Umwelteinwirkungen, die nach Stand der Technik vermeidbar sind, verhindert werden bzw. dass nach dem Stand der Technik unvermeidbare schädliche Umwelteinwirkungen auf ein Mindestmaß beschränkt werden und die beim Betrieb der Anlage entstehenden Abfälle ordnungsgemäß beseitigt werden können. Schädliche Umwelteinwirkungen sind (nach §3 Begriffsbestimmungen Abs. 1 BimSchG) Immissionen, die nach Art, Ausmaß oder Dauer geeignet sind, Gefahren, erhebliche Nachteile oder erhebliche Belästigungen für die Allgemeinheit oder die Nachbarschaft herbeizuführen.

Eine Konkretisierung der rechtlichen Anforderungen in diesem Zusammenhang erfolgt vor allem durch die Sechsundzwanzigste Verordnung zur Durchführung des Bundes- Immissionsschutzgesetzes 26. BImSchV) [2]. Diese Verordnung gilt für die Errichtung und den Betrieb von Hochfrequenzanlagen, Niederfrequenzanlagen und Gleichstromanlagen nach Absatz 2. Sie enthält Anforderungen zum Schutz der Allgemeinheit und der Nachbarschaft vor schädlichen Umwelteinwirkungen und zur Vorsorge gegen schädliche Umwelteinwirkungen durch elektrische, magnetische und elektromagnetische Felder.

Die Regelungen der 26. BImSchV sind nach § 1 (Anwendungsbereich) Abs. 2 für die Errichtung und den Betrieb von Niederfrequenzanlagen mit Nennspannungen größer 1000 V gültig und sind somit auf das hier zu beurteilende Freileitungsvorhaben anzuwenden.

Für die hiermit angezeigte Maßnahme sind die mit dem Vorhaben verbundenen Immissionen darzustellen und hinsichtlich der Einhaltung vorgeschriebener Grenz- und Richtwerte zu beurteilen. Für eine Höchstspannungsfreileitung handelt es sich hierbei, wie einleitend beschrieben unter anderem um die elektrischen und magnetischen Felder, die von der Leitung erzeugt werden.

3.1 Anforderungen zum Schutz vor schädlichen Umwelteinwirkungen (26. BlmSchV)

Im Sinne der 26. BImSchV § 3 Niederfrequenzanlagen sind Niederfrequenzanlagen (die vor dem 22. August 2013 errichtet worden sind) zum Schutz vor schädlichen Umwelteinwirkungen so zu betreiben, dass sie in ihrem Einwirkungsbereich an Orten, die zum nicht nur vorübergehenden Aufenthalt von Menschen bestimmt sind, bei höchster betrieblicher Anlagenauslastung die im Anhang 1a genannten

Stand: 22.11.2024 Seite **7** von **32**

Planfeststellungsverfahren Immissionsbericht (Unterlage 03-04-01) N-ERGIE Netz GmbH 110-kV-Freileitung Weißenburg - Preith Ersatzneubau Ltg. – Trasse: T014 Abschnitt 1: Weißenburg – Kaldorf M150 – M88

Grenzwerte nicht überschreiten, wobei Niederfrequenzanlagen mit einer Frequenz von 50 Hertz die Hälfte des in Anhang 1a genannten Grenzwertes der magnetischen Flussdichte nicht überschreiten dürfen.

Zum Schutz der Bevölkerung vor gesundheitlichen Gefahren durch elektromagnetische Felder gilt in Deutschland seit 1997 die Verordnung über elektromagnetische Felder (26. BlmSchV, novelliert im August 2013). Die Verordnung und die darin geregelten Grenzwerte stützen sich auf die Empfehlungen der deutschen Strahlenschutzkommission (SSK), die EU-Ratsempfehlung sowie die Leitlinien der "Internationalen Kommission zum Schutz vor nichtionisierender Strahlung" (ICNIRP).

Somit sind für das vorliegende Vorhaben folgende Immissionsgrenzwerte relevant:

Elektrische Feldstärke: 5 kV/m

Magnetische Flussdichte: 100 μT (50 % von 200 μT)

Bei der Ermittlung der elektrischen Feldstärke und der magnetischen Flussdichte nach Absatz 1 und Absatz 2 der 26. BlmSchV sind alle Immissionen zu berücksichtigen, die durch andere Niederfrequenzanlagen sowie durch ortsfeste Hochfrequenzanlagen mit Frequenzen zwischen 9 Kilohertz und 10 Megahertz, die einer Standortbescheinigung nach § 4 und 5 der Verordnung über das Nachweisverfahren zur Begrenzung elektromagnetischer Felder bedürfen, gemäß Anhang 2a entstehen.

Von Bund/Länder-Arbeitsgemeinschaft (LAI) für **Immissionsschutz** [3] wurden Handlungsempfehlungen zur Durchführung der Verordnung über elektromagnetische Felder erstellt (LAI, 2014). In Kapitel II.3.1. dieser Handluchsempfehlungen sind die in § 3 der 26. BImSchV verwendeten Begriffe "Einwirkbereich von Niederfrequenzanlagen" und "maßgeblichen Immissionsorte" spezifiziert. Der Einwirkungsbereich einer Niederfrequenzanlage beschreibt demnach den Bereich, in dem die Anlage einen signifikanten und von der Hintergrundbelastung abhebenden Immissionsbeitrag verursacht, unabhängig davon, ob die Immissionen tatsächlich schädliche Umwelteinwirkungen auslösen. Maßgebliche Immissionsorte sind Orte, die zum nicht nur vorübergehenden Aufenthalt von Menschen bestimmt sind und sich im folgenden genannten Bereich der Anlage befinden. Dieser Bereich der Anlage ist bei Freileitungen abhängig von der Betriebsspannung der Leitung. Er bemisst sich als einen an den ruhenden äußeren Leiter angrenzenden Streifen der Breite:

- 20 m bei 380 kV-Freileitungen
- 15 m bei 220 kV-Freileitungen
- 10 m bei 110 kV-Freileitungen
- 5 m bei Freileitungen mit einer Spannung kleiner 110 kV.

Stand: 22.11.2024 Seite 8 von 32

Nach Kapitel II.3.2 der LAI [3] dienen dem nicht nur vorübergehenden Aufenthalt von Menschen Gebäude und Grundstücke, in oder auf denen nach der bestimmungsgemäßen Nutzung Personen regelmäßig länger – mehrere Stunden – verweilen können. Als Anhaltspunkt ist dabei die üblicherweise anzunehmende durchschnittliche Aufenthaltsdauer einer einzelnen Person heranzuziehen. Das schutzwürdige Gebäude oder Grundstück muss nicht notwendigerweise einem dauernden Aufenthalt, z. B. zum Wohnen, dienen, Voraussetzung ist weiterhin nicht, dass man sich täglich dort aufhält. Ausreichen ist beispielweise auch ein Aufenthalt, der in regelmäßigen Abständen nur tagsüber oder nur in bestimmten Jahreszeiten stattfindet.

Entsprechend der vorgenannten Abgrenzung (nach LAI) dienen dem nicht nur vorübergehenden Aufenthalt insbesondere Wohngebäude, Krankenhäuser, Schulen, Schulhöfe, Kindergärten, Kinderhorte, Spielplätze und Kleingärten. Bei diesen Nutzungen sind in der Regel sowohl die Gebäude als auch die Grundstücke zum nicht nur vorübergehenden Aufenthalt von Menschen bestimmt. Auch Gaststätten, Versammlungsräume, Kirchen, Marktplätze mit regelmäßigem Marktbetrieb, Turnhallen und vergleichbare Sportstätten sowie Arbeitsstätten, z. B. Büro-, Geschäfts-, Verkaufsräume oder Werkstätten, können dem nicht nur vorübergehenden Aufenthalt von Menschen dienen.

Nur zum vorübergehenden Aufenthalt von Menschen dienen dagegen zum einen Orte, an denen die Verweilzeit des Einzelnen in der Regel gering ist. Hierzu zählen beispielsweise Gebäude und Räume, die nur zur Lagerung von Waren oder Aufbewahrung von Gegenständen angedacht sind, wie auch Garagen. Zum anderen zählen dazu Orte, an denen sich zwar ständig Menschen aufhalten, die Verweilzeit des Einzelnen aber in der Regel gering ist, wie beispielsweise Bahnsteige und Bushaltestellen, die ebenfalls im Sinne der Verordnung nur dem vorübergehenden Aufenthalt dienen.

3.2 Anforderungen zur Vorsorge gemäß 26. BlmSchVVwV

Die 26. BImSchV enthält darüber hinaus in § 4 auch über den Schutz vor schädlichen Umwelteinwirkungen hinausgehende Anforderungen zur Vorsorge.

Zum Zweck der Vorsorge darf eine wesentliche Änderung von Niederfrequenzanlagen in der Nähe von Wohnungen, Krankenhäusern, Schulen, Kindergärten, Kinderhorten, Spielplätzen oder ähnlichen Einrichtungen nur vorgenommen werden, wenn in diesen Gebäuden oder auf diesen Grundstücken abweichend von § 3 Absatz 1 Satz 2 auch die maximalen Effektivwerte der elektrischen Feldstärke und magnetischen Flussdichte den Anforderungen nach § 3 Absatz 1 Satz 1 entsprechen.

Des Weiteren sind nach § 4 Abs. 2 der 26. BImSchV bei der Neuerrichtung oder wesentlichen Änderung einer Freileitung die Möglichkeiten auszuschöpfen, die von der jeweiligen Anlage ausgehenden elektrischen, magnetischen und elektromagnetischen Felder nach dem Stand der Technik unter Berücksichtigung von Gegebenheiten im Einwirkungsbereich zu minimieren. Näheres dazu regelt die

Stand: 22.11.2024 Seite 9 von 32

Allgemeine Verwaltungsvorschrift zur Durchführung der Verordnung über elektromagnetische Felder - 26. BlmSchVVwV [4].

Die Prüfung der Minimierung ist von der Lage der maßgeblichen Minimierungsorte in Bezug auf den Bewertungsabstand abhängig. Es wird zwischen einer Prüfung nur an den Bezugspunkten und einer individuellen Minimierungsprüfung unterschieden. Der Bewertungsabstand und Einwirkungsbereich für Niederfrequenzanlagen werden wie folgt festgelegt:

Bewertungsabstand Freileitung (einschließlich Bahnstromfernleitung)

Nennspannung	Abstand
≥ 380 kV	20 m
≥ 220 kV < 380 kV	15 m
≥ 110 kV < 280 kV	10 m
< 110 kV	5 m

Abbildung 2: Bewertungsabstand (Quelle 26. BlmSchVVwV)

Einwirkungsbereich Freileitung (einschließlich Bahnstromfernleitung)

Nennspannung	Abstand
≥ 380 kV	400 m
≥ 220 kV < 380 kV	300 m
≥ 110 kV < 280 kV	200 m
< 110 kV	100 m

Abbildung 3: Einwirkungsbereich (Quelle 26. BlmSchVVwV)

Demnach sind Minimierungsmaßnahmen zu prüfen, wenn sich mindestens ein maßgeblicher Minimierungsort im Einwirkungsbereich der Anlage befindet. Zur Ermittlung der zu prüfenden Minimierungsmaßnahmen ist zwischen einer individuellen Minimierungsprüfung und einer Prüfung nur an den Bezugspunkten zu unterscheiden.

Eine individuelle Minimierungsprüfung ist für alle maßgeblichen Minimierungsorte durchzuführen, die sich im unmittelbaren Nahbereich der Leitung, also innerhalb des Bewertungsabstandes befinden. Dieser beträgt bei 110-kV Leitungen 10 m von ruhendem äußerem Leiter.

Für alle anderen Minimierungsorte, die sich zwischen dem Bewertungsabstand und der Grenze des Einwirkungsbereichs befinden (200 m von ruhenden äußerem Leitereil), wird das Minimierungspotential an den Bezugspunkten ermittelt.

Stand: 22.11.2024 Seite **10** von **32**

Die Prüfung möglicher Minimierungsmaßnahmen erfolgt individuell für die geplante Anlage einschließlich ihrer geplanten Leistung und für die festgelegte Trasse.

Die Verwaltungsvorschrift zur Durchführung 26. BImSchV, 26. BImSchVVwV [4] konkretisiert diese Anforderungen und schreibt die durchzuführenden planerischen Prüfschritte vor. Die Umsetzung des Minimierungsgebotes erfolgt dabei in drei Teilschritten:

- 1. Vorprüfung
- 2. Ermittlung der Minimierungsmaßnahmen
- 3. Maßnahmenbewertung

Im *Kapitel 9* wird die Anwendung des Minimierungsgebots nach § 4 Abs. 2 der 26. BImSchVVwV für die 110-kV-Freileitung Weißenburg-Preith, Ltg.-Trasse: T014 abgeprüft.

4 Trassenkonfiguration und Berechnungsparameter

In der Tabelle 1 sind die Berechnungsparameter der Freileitung T014 Abschnitt Mast 150 bis Mast 88 zusammengefasst. Diese liegen der Berechnung der elektrischen Feldstärken und magnetischen Flussdichten bei höchster betrieblichen Anlagenauslastung zu Grunde. Als Phasenlage wurde der zur Verfügung gestellten Phasenlageplan zugrunde gelegt. Der Grenzwert der elektrischen Feldstärke wird eher erreicht als der Grenzwert der magnetischen Flussdichte.

Tabelle 1: Berechnungsparameter Mast 150- Mast 88 zur Ermittlung der Immissionen

Höchste Betriebsspannung U _s :	123 kV
Betriebsstrom (maximale Auslastung):	1.680 A
Leiterseil:	2x3x2 AL/ST 380/50 (2 Bündel horizontal)
Erdseil Luftkabel	OPGW 97-AL3/48-A20SA
Frequenz:	50 Hz

Darstellung Einebene mit Phasenbezeichnung. Betrachtung in Leitungsrichtung.

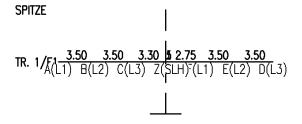
Tabelle 2: Phasenbelegung

Mastbereich	Phasenbelegung (SK links / SK rechts)
M150 (der T015) – Mast 40	L1 L3 L2 / L1 L3 L2
Mast 40 – Mast 88	L3 L2 L1 / L3 L2 L1

Stand: 22.11.2024 Seite **11** von **32**

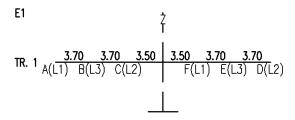
Schematische Mastbilder

Winkelabspannmast WA160,


Mastbereich: 9, 13, 17, 24, 28, 40, 48, 58, 71, 82 und 88

I/LK
$$Z(SLH)$$

TR. 1 $A(L1) B(L2) C(L3) F(L1) E(L2) D(L3)$


Winkelabspannmast WA160,

Mast 12

Winkelabspannmast WA140

Mastbereich: 2, 8 und 32

Tragmast T

Mastbereich: 3-7, 10-11, 14-16, 18-23, 25-27, 29-31, 33-39, 41-47, 49-57, 59-70, 72-81 und 83-87

Stand: 22.11.2024 Seite **12** von **32**

5 Berücksichtigung von Immissionsbeiträgen anderer Anlagen

Bei der Berechnung der Immissionen sind die andere beeinflussenden Niederfrequenz- und Hochfrequenzanlagen zu berücksichtigen. Folgenden Niederfrequenzanlagen sind bei den Immissionsberechnungen zu berücksichtigen:

- 220/380-kV-Freileitung LH-08-B105 Ingolstadt-Raitersbach (TenneT) Parallelführung: Mast 72-110
- 110-kV-Freileitung T009: Gebersdorf Weißenburg (N-ERGIE)
 Kreuzung: Mast 11 und 12
- 20-kV-Freiltung (N-ERGIE)
 Kreuzung: Mast 6 und 7
- 20-kV-Freileitung (N-ERGIE)
 Parallelführung: Mast 10 und 16
 Kreuzung: Mast 15 16 und 16 17
- 20-kV-Kabel (N-ERGIE)
 Kreuzung: Mast 47 und 48
- 15-kV-Bahnleitung (Deutsche Bahn)
 Kreuzung: Mast und 8 und 9

Die Berücksichtigung der Immissionsbeiträge anderer Niederfrequenzanlagen, dies sind insbesondere andere Freileitungen, erfolgt durch zusätzliche Modellierung dieser Anlagen im Berechnungsprogramm. In Hoch- und Höchstspannungsnetzten sind Oberwellenanteile (z.B. 100 Hz, 150 Hz) sehr gering. Deren zusätzliche Immissionsbeiträge sind gegenüber den Immissionen der Grundfrequenz zu vernachlässigen und werden daher im Weiteren nicht betrachtet. Nach den Ausführungen in den LAI-Durchführungshinweisen [3] sind ortsfeste Hochfrequenzanlagen bis zu Frequenz kleiner oder gleich 10 MHz in den Berechnungen zu berücksichtigen. Diese tragen ab einem Abstand von 300 m nicht relevant zur Vorbelastung bei. Für den geplanten Trassenverlauf sind laut EMF-Datenbank der Bundesnetzagentur, abgerufen am 21.11.2024, keine entsprechenden Hochfrequenzanlagen in diesem Aspekt vorhanden, Abstand sodass dieser nicht weiter zu betrachten ist (https://emf3.bundesnetzagentur.de/karte/).

6 Nachweismethodik gem. 26.BImSchV

Entsprechend den Regelungen in § 5 der 26. BlmSchV sind für die Ermittlung der Feldstärke- und Flussdichtewerte an den maßgeblichen Einwirkungsorten keine Messungen erforderlich, wenn die Einhaltung der Grenzwerte durch Berechnungsverfahren festgestellt werden kann. Dementsprechend wird die hier verwendete Nachweismethodik auf Berechnungsverfahren mit der zertifizierten Software WinField (siehe Anlage 4) aufgebaut, die den Anforderungen an Mess- und Berechnungsverfahren nach DIN EN 50413 entspricht. Hierzu wird in dem Berechnungsprogramm die Leitung als Feldquelle modelliert.

Stand: 22.11.2024 Seite **13** von **32**

Für die Berechnung der Immissionswerte werden durchgängig konservative Ansätze gewählt. Die der Software zugrundeliegende Rechenmethode ermittelt dabei Feldstärkewerte, die über den real vorhandenen Werten liegen.

Für die elektrotechnischen Parameter wird immer die höchste betriebliche Anlagenauslastung zu Grunde gelegt. Dies bedeutet, dass folgende Betriebsspannungen in die Berechnung einfließen:

Für 110-kV-Systeme 123 kV
 Für 220-kV-Systeme 240 kV
 Für 380-kV Systeme 420 KV

Diese Betriebsspannungen werden sowohl für die beantragte Freileitung als auch für alle mitgeführten oder parallel verlaufenden Freileitungen angenommen.

6.1 Ermittlung der maßgeblichen Immissionsorte gem. 26. BImSchV

Bei der Ermittlung der maßgeblichen Immissionsorte zum Schutz und der maßgeblichen Minimierungsorte zur Vorsorge sind die Anforderungen der 26. BImSchV und die zugehörigen Ausführungen in den LAI-Durchführungshinweisen zu beachten (siehe auch Kapitel 3).

Wie in Kapitel 3 ausführlich dargestellt, ist zu ermitteln, ob maßgebliche Immissionsorte bei der geplanten 110-kV-Freileitung Weißenburg-Preith in einem Bereich bis zu 10 m Abstand vom äußersten ruhenden Leiterseil liegen. Dafür wurde der gesamte Verlauf auf entsprechende Orte mit Hilfe von Luftbildern untersucht.

Nach der Sichtung der zur Verfügung gestellten Unterlagen wurden in dem untersuchten Bereich mehrere relevante maßgebliche Immissionsorte identifiziert (siehe *Tabelle 3*).

Tabelle 3: Maßgebliche Immissionsorte im Einwirkungsbereich der Anlage

	Spannfeld von Mast - bis Mast Maßgeblicher Immissionsort		Lago (+ rechts;			
Lfd. Nr.		INUITALINGSAFF		Grundstück zu Trassen- achse (m)	, , , , , , , , , , , , , , , , , , ,	Anzeige/ Anlage Nr.
1	16 - 17	Gmkg. Weiboldshausen Flurstück Nr. 429	Sondernutzung Kläranlage	+8	-26	1.3
2	21 - 22	Gmkg. Waigolshausenn Flurstück Nr.115	Landwirtsch. Gebäude	-9,6	-54	2.3
3	23 - 24	Gmkg.Waigolshausenn Flurstück Nr. 810	Landwirtsch. Gebäude	-11	-26	3.3
4	58 - 59	Gmkg. Burgsalach Flurstück Nr. 211	Landwirtsch. Gebäude	+7,4	-24	4.3

Stand: 22.11.2024 Seite **14** von **32**

6.2 Berechnung der Immissionen an maßgeblichen Immissionsorten

Entsprechend den Ausführungen in Kapitel 3 ist zum Schutz vor schädlichen Umwelteinwirkungen der Nachweis zu erbringen, dass im Einwirkungsbereich der Freileitung an Orten, die zum nicht nur vorübergehenden Aufenthalt von Menschen bestimmt sind, entsprechende Grenzwerte für die Feldstärken der elektrischen und magnetischen Felder eingehalten werden. Da es bei der Bewertung der Immissionen immer um Orte geht, die auch den Aufenthalt von Menschen ermöglichen, werden die Berechnungen am Erdboden auf dem Flurstück in 1°m Höhe über der Erdoberkante und in Objekthöhe für sämtlichen Gebäuden durchgeführt und ausgewertet.

Die Bewertung für elektrische und magnetische Felder erfolgt entsprechend der einzelnen immissionsschutzrechtlichen Vorgaben. Zunächst werden die Ergebnisse im Hinblick auf die einzuhaltenden Grenzwerte dargelegt und mit den zulässigen Grenzwerten gemäß 26. BImSchV gegenübergestellt. Die entsprechenden Ergebnisse sind der *Tabelle 4* und der *Anlage 1* zum Immissionsbericht zu entnehmen.

Tabelle 4: Maximal zu erwartende Werte der elektrischen Feldstärke und magnetische Flussdichte an maßgeblichen Immissionsorten

Lfd.	Maßgeblicher Immissionsort	Elektrisches Feld [kV/m]		Magnetisches Feld [µT]		Einhaltung der
Nr.		Objekt	Flurstück	Objekt	Flurstück	Grenzwerte
1	Weiboldshausen Flurstück Nr. 429	-	0,46	-	7,8	ja
2	Gmkg. Weiboldshausen Flurstück Nr.115	0,1	0,83	1,4	13,7	ja
3	Gmkg. Weiboldshausen Flurstück Nr. 810	0,39	0,57	6,2	8,8	ja
4	Gmkg. Burgsalach Flurstück Nr. 211	0,34	0,6	4,7	9,8	ja

Für alle relevanten Immissionsorte (nicht nur vorübergehender Aufenthalt) wurden Formblätter in der Form einer Anzeige erstellt. Die Ergebnisse sind der Anlagen 3.1-3.4 zu entnehmen.

Stand: 22.11.2024 Seite **15** von **32**

7 Berechnungsgrundlagen

Tabelle 5: Berechnungsgrundlagen

Berechnungsgröße:	ungestörtes magnetisches und elektrisches Wechselfeld unter max. Last entsprechend DIN VDE 0848 und 26. BImSchV, Frequenz 50 Hz
Berechnungsgrundlagen:	zur Verfügung gestellte Planungsunterlagen
Berechnungsmethode:	als Horizontalschnitte in 1,0 m über Grund und in Objekthöhe für die elektrische Feldstärke und magnetische Flussdichte
Berechnungsraster:	1,0 m × 1,0 m
Berechnungsprogramm	WinField Release 2024 der FGEU mbH

Stand: 22.11.2024 Seite **16** von **32**

8 Prüfung des Minimierungspotenzial gem. 26. BlmSchVVwV

Bei dem geplanten Vorhaben handelt sich um neue Seilauflegung mit Erhöhung der Übertragungskapazität. In dem Fall liegt eine wesentliche Änderung im Sinne der 26. BlmSchV vor. Die Umsetzung des Minimierungsgebotes (gemäß § 4 Abs. 2 der 26. BlmSchV i.V.m. 26. BlmSchVVwV) erfolgte entsprechend der Vorgaben (siehe Kapitel 3.1).

8.1 Vorprüfung nach Nr. 3.2.1

Da das Vorhaben eine wesentliche Änderung im Sinne der 26. BlmSchV darstellt, ist zu prüfen, ob mindestens ein maßgeblicher Minimierungsort im Einwirkungsbereich der Anlage liegt. Analog zum Kapitell 6.1 wurde der gesamte Verlauf der Leitungsabschnitt mit Hilfe von Luftbildern abgesucht, um die maßgeblichen Minimierungsorte in dem Einwirkungsbereich zu ermitteln. Die Vorprüfung innerhalb des Betrachtungskorridor der 110-kV-Ltg.T014 Weißenburg-Preith, Abschnitt 1: Weißenburg – Kaldorf Mast 150 - Mast 88 hat ergeben, dass sowohl in dem Bewertungsabstand (Fläche zwischen Trassenachse und Bewertungsabstand) als auch in dem Einwirkungsbereich (Fläche zwischen Bewertungsabstand und Einwirkungsbereich) der geplanten Anlage mehrere Minimierungsorte liegen (Fall II der 26. BlmSchVVwV).

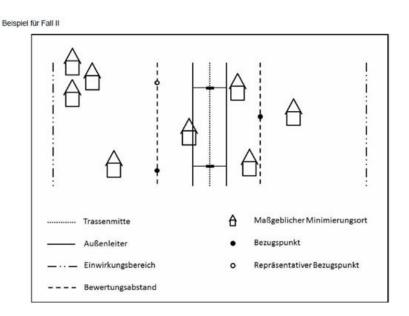


Abb. 1: Beispiel Fall II zur Ermittlung von Bezugspunkten (Quelle 26. BlmSchVVwV)

Die maßgeblichen Minimierungsorte (MMO) zwischen der Trassenachse und des Bewertungsabstandes, die eine Minimierungsprüfung bedürfen, sind in der *Tabelle 3* aufgelistet. Die dazugehörigen Ergebnisse sind der *Tabelle 4* zu entnehmen

Liegt der jeweilige maßgebliche Minimierungsort außerhalb des Bewertungsabstands und im Einwirkungsbereich, so handelt es sich dabei um solche, welche einer Prüfung der Minimierung nur an den Bezugspunkten (BP) bedürfen.

Stand: 22.11.2024 Seite **17** von **32**

Handelt es sich bei dem jeweiligen maßgeblichen Minimierungsort (MMO) um eine Ansammlung mehrerer einzelner Objekte, so werden diese zusammengefasst betrachtet und mittels eines repräsentativen Bezugspunktes (RBP) geprüft. Der Bezugspunkt ist ein Punkt, der für maßgebliche Minimierungsorte, die außerhalb des Bewertungsabstandes liegen, ermittelt wird. Er liegt im Bewertungsabstand auf den kürzesten Geraden zwischen dem jeweiligen maßgeblichen Minimierungsort und der jeweiligen Trassenachse. Bei dichter Bebauung und damit einer Vielzahl von Bezugspunkten können stattdessen ein oder mehrere repräsentative Bezugspunkte gewählt werden.

Nach der Sichtung der Unterlagen ist festzustellen, dass in dem Einwirkungsbereich der Trasse Weißenburg – Kaldorf M150 – M88 mehrere Minimierungsorte liegen. Die Ergebnisse der Vorprüfung innerhalb des Einwirkungsbereichs sind der *Tabelle 6* zu entnehmen.

Tabelle 6: Maßgebliche Minimierungsorte im Einwirkungsbereich

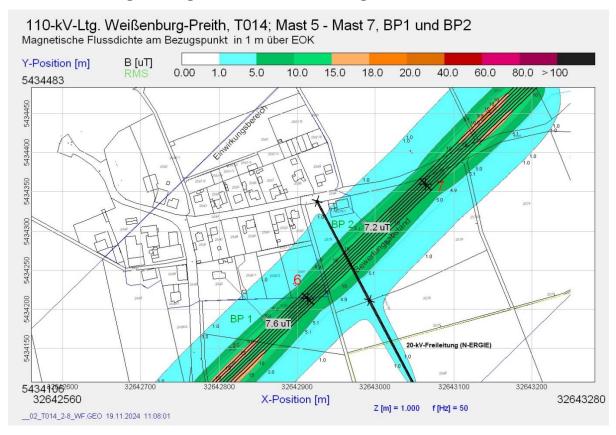
Lfd. Nr.	Spannfeld von Mast - bis Mast	Minimierungsort Adresse Flurstück / Gemarkung	Bezugspunkt	Lage (von der Leitungsachse zum Obj.)
1	5 - 6	Schmalwiesen 32, 91781 Weißenburg Flurstück Nr. 2592, Gmkg. Weimersheim	rBP1	-93 m
2	6 - 7	Schmalwiesen 25A, 91781 Weißenburg Flurstück Nr. 2579/1, Gmkg. Weimersheim	rBP2	-48 m
3	10 - 11	Bräumühle 1, 91792 Ellingen Flurstück Nr. 558, Gmkg. Eilingen	iBP3	-77 m
4	11 - 12	Nürnberger Str. 77, 91781 Weißenburg Flurstück Nr. 1173/3,Gmkg. Weißenburg	iBP4	+92 m
5	12 - 13	Nürnberger Str. 76, 91781 Weißenburg Flurstück Nr. 1276, Gmkg. Weißenburg	rBP5	+150 m
6	20 - 21	Ellgasse 2A, 91798 Weiboldshausen Flurstück Nr. 110/1, Gmkg. Weiboldshausen	rBP6	-155 m
7	22 - 23	91798 Weiboldshausen Flurstück Nr. 76, Gmkg. Weiboldshausen	iBP7	-108 m
8	24 - 25	Holzgasse, 91798 Weiboldshausen Flurstück Nr. 1025, Gmkg. Weiboldshausen	iBP8	+43 m
9	26 - 27	91798 Weiboldshausen Flurstück Nr. 830, Gmkg. Weiboldshausen	iBP9	-71 m
10	56 - 57	91790 Burgsalach Flurstück Nr. 251, Gmkg. Burgsalach	iBP10	-102 m
11	59 - 60	Burgusstraße 66, 91790 Burgsalach Flurstück Nr. 1548, Gmkg. Burgsalach	rBP11	+53 m
12	60 - 61	Kirschbaumweg 24a, 91790 Burgsalach Flurstück Nr. 342/4, Gmkg. Burgsalach	rBP12	-143 m
13	61 - 62	Am Römerturm 10, 91790 Burgsalach Flurstück Nr. 343/7, Gmkg. Burgsalach	rBP13	-178 m

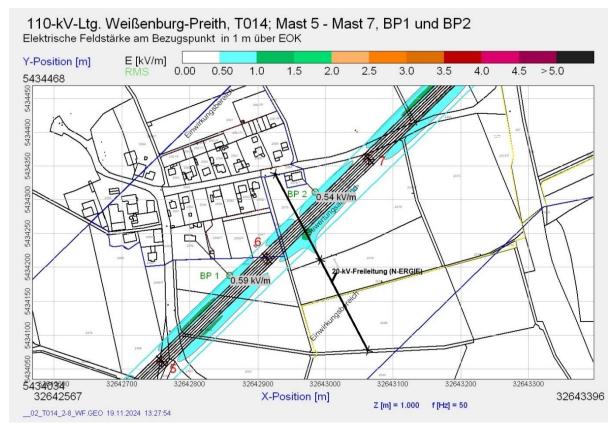
Stand: 22.11.2024 Seite **18** von **32**

8.2 Berechnung der Immissionen im Einwirkungsbereich

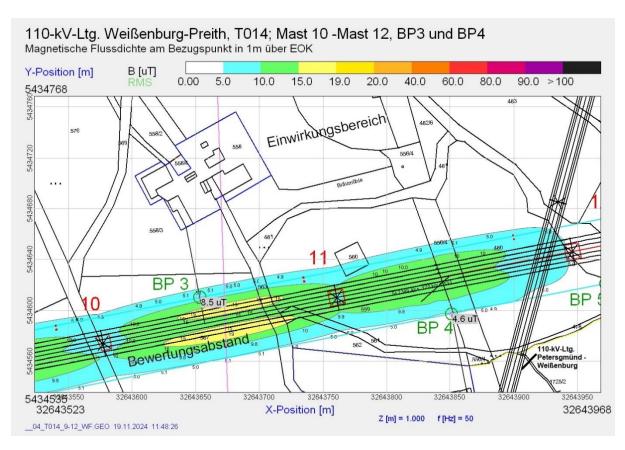
Das Ergebnis der Vorprüfung hat gezeigt, dass sich in dem Einwirkungsbereich der 110-kV-Freileitung T014 Weißenburg-Preith, Abschnitt 1 Weißenburg – Kaldorf Mast 150 - Mast 88 mehrere maßgebliche Minimierungsorte befinden, die einer Prüfung an den Bezugspunkten bedürfen. Die maximal zu erwartenden Stärken des elektrischen Feldes und der magnetischen Flussdichte wurden in der *Tabelle 7* angegeben und bewertet (siehe *Anlage A2*).

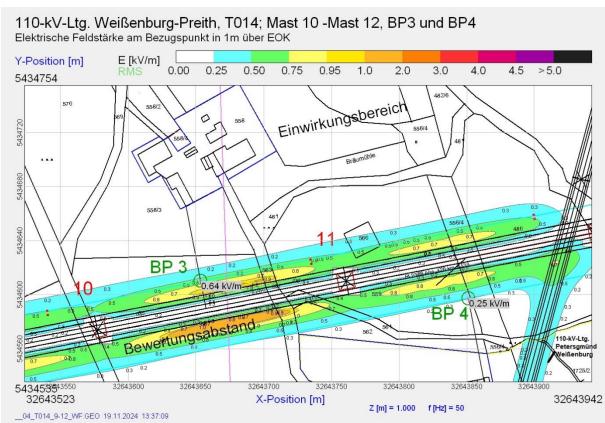
Tabelle 7: Maximal zu erwartende Werte der elektrischen Feldstärke und magnetische Flussdichte im Einwirkungsbereich an relevanten Bezugspunkten

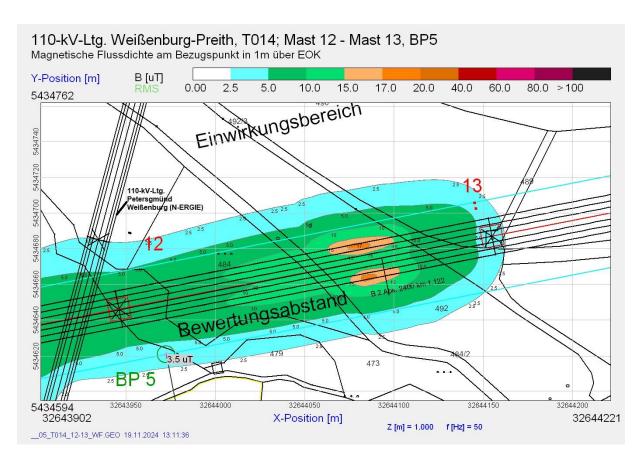

Lfd. Nr.	Spannfeld von Mast - bis Mast/ Lage	Bezugspunkt	Elektrisches Feld	Magnetische Flussdichte	Einhaltung der Grenzwerte
1	5 - 6	rBP1	0,59 kV/m	7,6 µT	ja
2	6 - 7	rBP2	0,56 kV/m	7,2 µt	ja
3	10 - 11	iBP3	0,64 kV/m	8,5 µT	ja
4	11 - 12	iBP4	0,27 kV/m	4,6 µT	ja
5	12 - 13	rBP5	0,18 kV/m	3,5 µT	ja
6	20 - 21	rBP6	0,44 kV/m	5,7 µT	ja
7	22 - 23	iBP7	0,35 kV/m	4,7 µT	ja
8	24 - 25	iBP8	0,28 kV/m	4,2 µT	ja
9	26 - 27	iBP9	0,48 kV/m	6,2 µT	ja
10	56 - 57	iBP10	0,44 kV/m	5,8 µT	ja
11	59 - 60	rBP11	0,62 kV/m	8,1 µT	ja
12	60 - 61	rBP12	0,65 kV/m	8,3 µT	ja
13	61 - 62	rBP13	0,53 kV/m	6,6 µT	ja

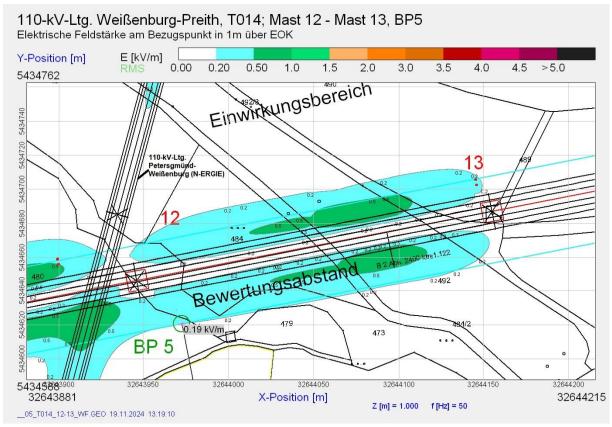

Es ist festzustellen, dass in dem zu untersuchenden Bereich an dem relevanten Bezugspunkt des Einwirkungsbereiches, die zu erwartenden magnetischen Flussdichten und elektrischen Feldstärken bei maximaler Auslastung der Anlage deutlich unterhalb der vom Gesetzgeber festgelegten Grenzwerten liegen.

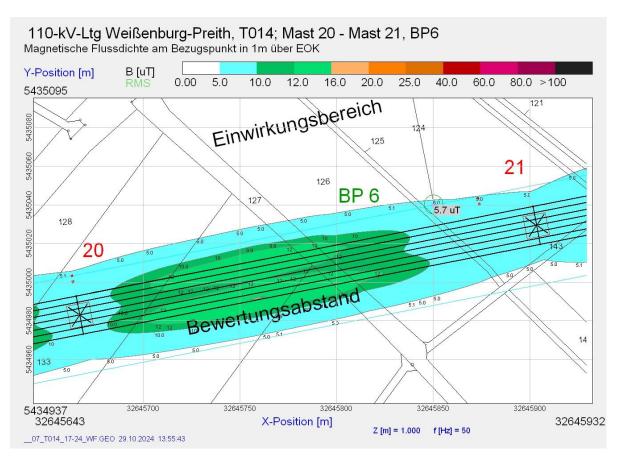
Die Darstellung der Berechnungsergebnisse als Isolinien sind in dem Kapitel 8.3 dokumentiert.

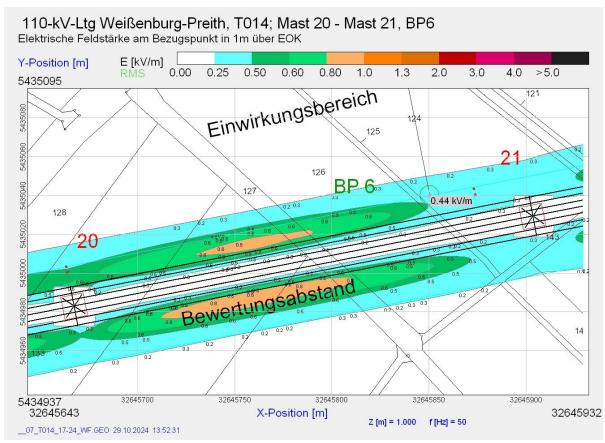

Stand: 22.11.2024 Seite **19** von **32**

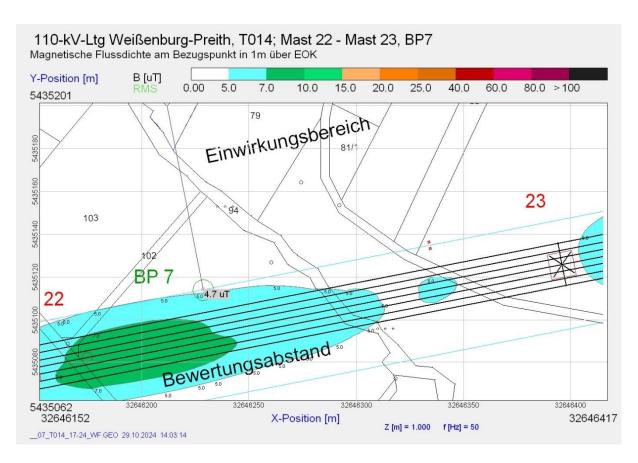

8.3 Darstellung der Ergebnisse im Einwirkungsbereich

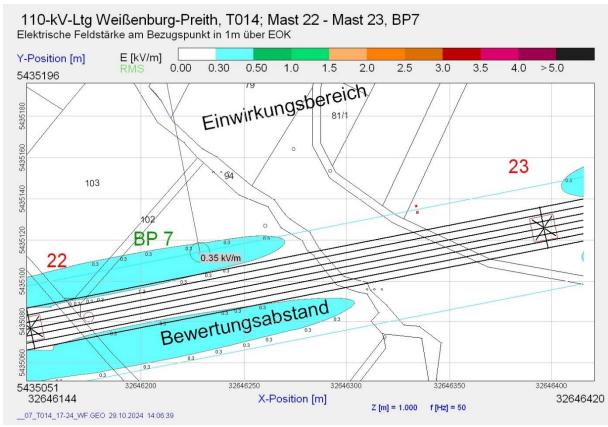


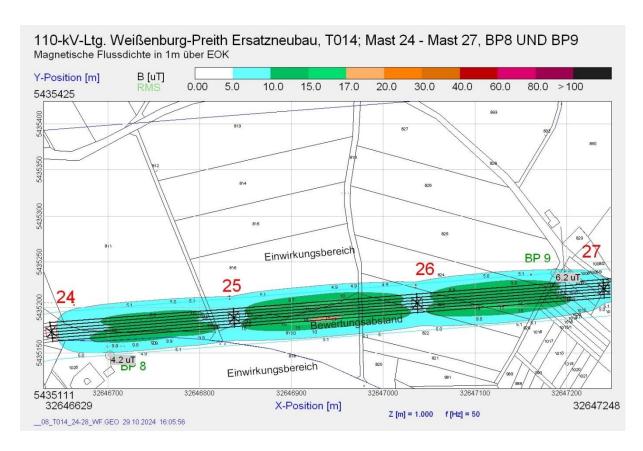

Stand: 22.11.2024 Seite **20** von **32**

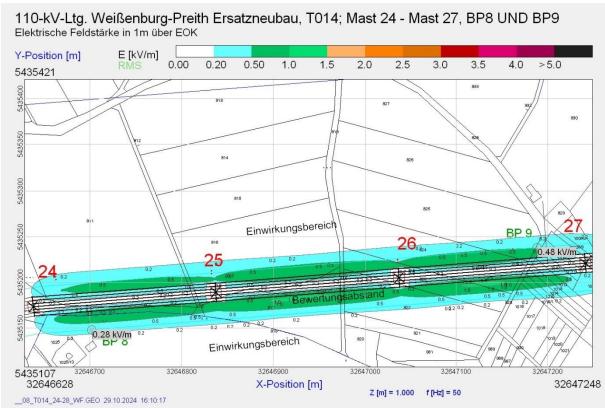


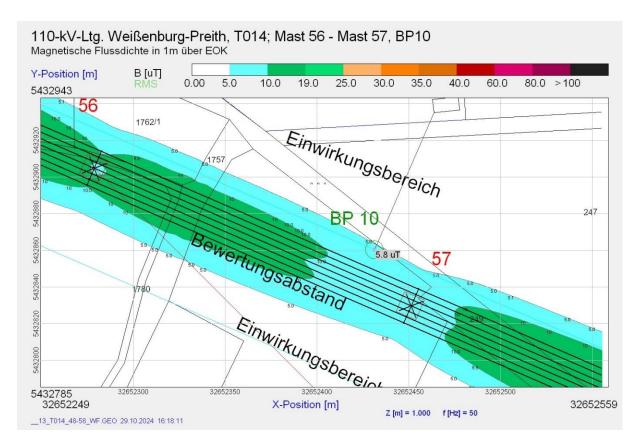

Stand: 22.11.2024 Seite **21** von **32**

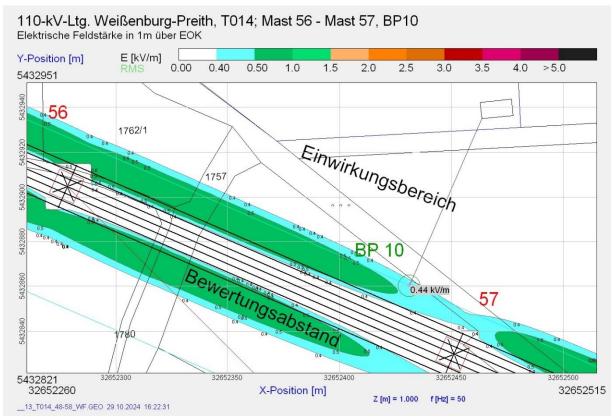


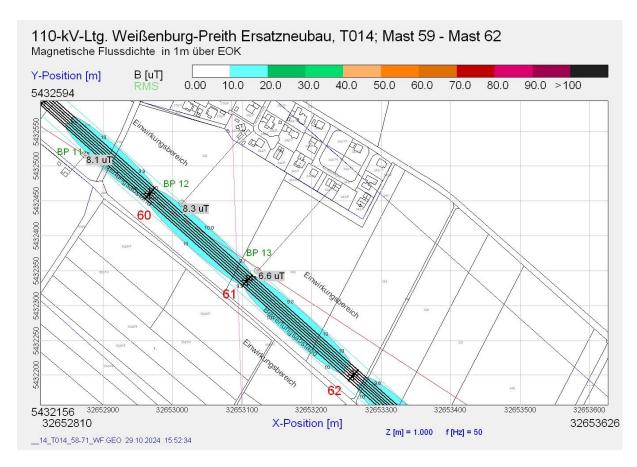

Stand: 22.11.2024 Seite **22** von **32**

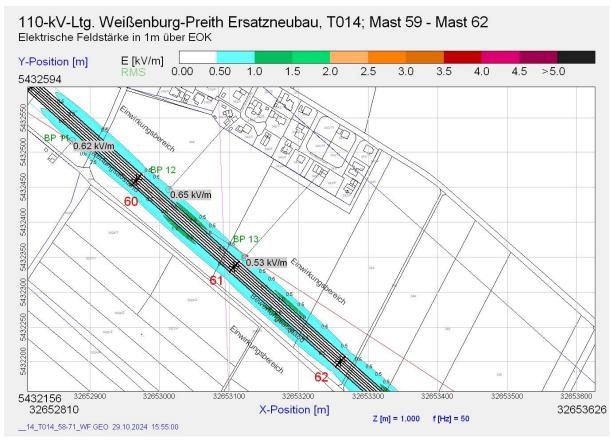



Stand: 22.11.2024 Seite 23 von 32




Stand: 22.11.2024 Seite **24** von **32**




Stand: 22.11.2024 Seite **25** von **32**

Stand: 22.11.2024 Seite **26** von **32**

Stand: 22.11.2024 Seite **27** von **32**

110-kV-Freileitung Weißenburg - Preith Ersatzneubau Ltg. – Trasse: T014

Abschnitt 1: Weißenburg – Kaldorf M150 – M88

8.4 Ermittlung der Minimierungsmaßnahmen nach Nr. 3.2.2

Die Prüfung der Minimierung ist von der Lage der Minimierungsorte abhängig. Befindet sich ein

Minimierungsort innerhalb des Einwirkungsbereichs, aber nicht innerhalb des Bewertungsbereichs

(Fläche zwischen Bewertungsabstand und Trassenachse), so erfolgt die Prüfung nur am Bezugspunkt.

Die nach Kapitel 5.3 der 26. BlmSchVVwV zur Verfügung stehenden technischen Möglichkeiten zur

Minimierung sind zu prüfen und zu bewerten. Alle maßgeblichen Minimierungsorte, sowohl im

Bewertungsabstand der Anlage als auch im Einwirkungsbereich, werden über einen gemeinsamen

Ansatz betrachtet.

1. Abstandsoptimierung

Die größten Werte der elektrischen und magnetischen Felder treten direkt unterhalb der Freileitungen

zwischen den Masten am Ort der größten Bodenannäherung der Leiter auf.

Ziel dieser Maßnahme ist es, die Distanz der Leiterseile zu maßgeblichen Minimierungsorten zu

vergrößern. Die Wirksamkeit dieser Maßnahme ist grundsätzlich im Nahbereich der Trasse hoch und

nimmt mit zunehmendem Abstand zur Trasse ab.

Bei der hier geplanten 110-kV-Freileitung T014 Weißenburg-Preith betragen die minimalen

Bodenabstände im Spannfeld ca.10 m. Die tatsächlichen Bodenabstände sind in den meisten

Spannfeldern deutlich größer und somit auch deutlich über dem nach mindestens gefordertem

Normwert von 6 m für die 110-kV-Leitung. Somit ist der Bodenabstand um ca. 4 m höher als der

geforderten Mindestbodenabstand.

Dadurch, dass die größten Werte der elektrischen und magnetischen Felder direkt unterhalb der

Freileitungen zwischen den Masten am Ort der größten Bodenannäherung der Leiter auftreten, ist eine

Vergrößerung der Bodenabstand eine wirksame Maßnahme, die zu einer Minimierung der Immissionen

führt.

2. Elektrische Schirmung

Für die elektrische Schirmung ist eine zusätzliche Traverse notwendig und die Maßnahme ist nur

wirksam, wenn dieses Erdseil unterhalb oder seitlich der Leitungssysteme angebracht sind. Bei

Freileitungen bewirkt das Mitführen zusätzlicher Erdleiterseile neben den oder unterhalb der Leiterseile

nur eine geringe Minderung der elektrischen Feldstärke.

Stand: 22.11.2024 Seite **28** von **32**

110-kV-Freileitung Weißenburg - Preith Ersatzneubau Ltg. – Trasse: T014

Abschnitt 1: Weißenburg – Kaldorf M150 – M88

Aufgrund der geringen Wirksamkeit, des enormen Realisierungsaufwandes und des Eingriffes in Landschaft und Boden, ist die Anwendung der Maßnahme als unverhältnismäßig anzusehen und scheidet daher aus.

3. Minimieren der Seilabstände

Eine wirksame Optimierung wird dann erreicht, wenn der Abstand der Phasen zueinander möglichst klein gewählt wird. Für eine sichere Isolation der unter Spannung stehenden Leiter untereinander und zu geerdeten Teilen sind die in der Norm DIN-EN 50341-2-4 vorgeschriebenen Mindestabstände unter Berücksichtigung des windbedingten Ausschwingens der Leiter einzuhalten. Zusätzlich erhöht sich mit geringerem Leiterabstand die Feldstärke zwischen den Leitern und somit die Randfeldstärke an den Leiteroberflächen, was zu einem Anstieg der Korona-Entladungen und den damit verbundenen Geräuschen führen kann.

Aus den genannten Gründen ist die Anwendung der Maßnahme als unverhältnismäßig anzusehen und scheidet daher aus.

4. Optimierung der Mastkopfgeometrie

Grundsätzlich bildet der Einebenenmast das Optimum aus Leitungshöhe und Trassenbreite im Vergleich zu anderen Mastbildern. Auch aus artenschutzrechtlicher Sicht ist ein Einebenenmast vorteilhafter gegenüber anderen Mastkonfigurationen, da das Kollisionsrisiko von Vögeln geringer ist. Unter Berücksichtigung der oben genannten Aspekte wurde bei der 110-kV-Freileitung Weißenburg-Preith, Ltg.-Trasse: T014 der Einebenenmast bevorzugt.

5. Optimieren der Leiteranordnung

Die Leiterfolge beeinflusst die elektrischen Eigenschaften der Leitung im Netz und wird aus technischen (sämtliche Anschlüsse und Anbindung an Umspannwerk und vorhandenen Netz), wirtschaftlichen Aspekten bestimmt. Durch Berechnungen wird die optimale Leiteranordnung aus technischen und wirtschaftlichen Aspekten für die Freileitungstrasse festgelegt.

Aus den genannten Gründen ist eine zusätzliche Optimierung der Leiteranordnung aus betrieblicher Sicht eingeschränkt.

Stand: 22.11.2024 Seite **29** von **32**

9 Zusammenfassung und Fazit

Elektrische Freileitungen erzeugen aufgrund der unter Spannung stehenden und Strom führenden Leiter elektrische und magnetische Felder. Daher sind die Vorschriften des BImSchG zu beachten bzw. die Einhaltung der konkreten Anforderungen der 26. BImSchV für Niederfrequenzanlagen darzulegen. Im vorliegenden Bericht wurde geprüft, ob nach vorgesehenen Maßnahmen alle gesetzlichen Anforderungen an Niederfrequenzanlagen zum Schutz vor schädlichen Umwelteinwirkungen eingehalten werden. Dabei wurde durch Berechnungen nachgewiesen, dass die Feldstärken der elektrischen und magnetischen Felder in allen Spannfeldern der 110-kV-Freileitung T014 Weißenburg-Preith, Abschnitt 1 Weißenburg Kaldorf Mast 150 - Mast 88 unterhalb der zulässigen Grenzwerte an den relevanten Immissionsorten liegen und damit alle Schutzanforderungen erfüllt sind.

Die ermittelten Werte der zu erwartenden Feldstärken sind der Tabelle 5 (auch Anlage A.1) für den Bewertungsabstand und der Tabelle 6 (auch Anlage A.2) an repräsentativen Bezugspunkten für den Einwirkungsbereich zu entnehmen.

Maximale Werte am Immissionsort /Planung

Spannfeld zwischen Mast 21 – 22 (Anlage A1, Lfd. Nr. 2)

Flurstück Nr. 115, Gemarkung Weiboldshausen 91798 Weiboldshausen

In 1m über EOK auf dem Flurstück:

maximale magnetische Flussdichte 13,7 μ T maximale elektrische Feldstärke 0,83 kV/m

Am Objekt im Objekthöhe

maximale magnetische Flussdichte 1,4 μ T maximale elektrische Feldstärke 0,1 kV/m

Maximale Werte am Bezugspunkt in 1m über EOK / Planung

Spannfeld zwischen Mast 10 - 11 (Anlage A2, Lfd. Nr.3)

In 1m über EOK:

maximale magnetische Flussdichte 8,5 μ T maximale elektrische Feldstärke 0,64 kV/m

Dadurch dass die "effektiv anzuwendenden" Grenzwerte der 26. BlmSchV deutlich unterschritten werden, sind aus Sicht des Personenschutzes keine Maßnahmen erforderlich.

Für alle relevanten Immissionsorte (nicht nur vorübergehender Aufenthalt) wurden Formblätter in der Form einer Anzeige erstellt, in denen die Lage des Objektes, die zu erwartende maximale Werten am maßgeblichen Immissionsort sowie auch die technischen Daten in dem zu berechnenden Leitungsabschnitt dargestellt sind. Die Ergebnisse sind aus der *Anlage 3 (3.1-3.4)* zu entnehmen.

Stand: 22.11.2024 Seite **30** von **32**

10 Literaturverzeichnis

[1]	Gesetz zum Schutz vor schädlichen Umwelteinwirkungen durch Luftverunreinigungen, Geräusche, Erschütterungen und ähnliche Vorgänge (Bundes-Immissionsschutzgesetz – BImSchG), Neugefasst durch Bek. v. 17.5.2013 I 1274; 2021, 123; zuletzt geändert durch Art. 1 G v. 3.7.2024 I Nr. 225
[2]	Sechsundzwanzigste Verordnung zur Durchführung des Bundes-Immissionsschutzgesetzes (Verordnung über elektromagnetische Felder - 26. BlmSchV), Neugefasst durch Bek. v. 14.8.2013 I 3266.
[3]	LAI, Hinweise zur Durchführung der Verordnung über elektromagnetische Felder, mit Beschluss der 54. Amtschefkonferenz in der Fassung des Beschlusses der 128. Sitzung der Bund/Länder-Arbeitsgemeinschaft für Immissionsschutz am 17. und 18. September 2014 in Landshut.
[4]	Allgemeine Verwaltungsvorschrift zur Durchführung der Verordnung über elektromagnetische Felder - 26. BlmSchV (26. BlmSchVVwV), 2016.
[6]	DVGW GW 22: Maßnahmen beim Bau und Betrieb von Rohrleitungen im Einflussbereich von Hochspannungs- Drehstromanlagen und Wechselstrom-Bahnanlage; textgleich mit der AfK-Empfehlung Nr. 3 und der Technischen Empfehlung Nr. 7 der Schiedsstelle für Beeinflussungsfragen, v. 04.2017
[7]	Technische Empfehlung Nr. 7: Maßnahmen beim Bau und Betrieb von Rohrleitungen im Einflussbereich von Hochspannungs- Drehstromanlagen und Wechselstrom-Bahnanlagen, v. Februar 2014
[8]	Auswirkungen elektromagnetischer Beeinflussungen von Hochspannungs- wechselstrombahnen und/oder Hochspannungsanlagen auf Rohrleitungen, v. 08.2012
[9]	AfK-Verhaltenskodex von Juli 2019: Umsetzung beeinflussungsrelevanter Vorhaben

Stand: 22.11.2024 Seite **31** von **32**

11 Verzeichnis der Anlagen

Nummer	Beschreibung
Anlage 1	Berechnungsergebnisse im Bewertungsabstand
Anlage 2	Berechnungsergebnisse im Einwirkungsbereich
Anlage 3	Anzeigen (3.1 – 3.4)
Anlage 4	WinField Zertifizierung

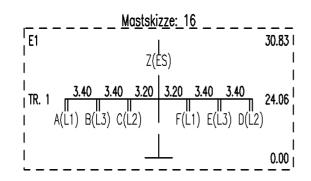
Stand: 22.11.2024 Seite **32** von **32**

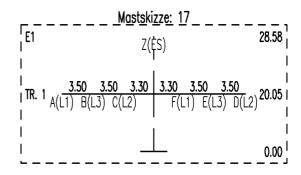
110-kV-Ltg. Weißenburg-Preith T014 Abschnitt 1: Weißenburg-Kaldorf Mast 150-Mast 88 Ber. Werte der magnetischen Flussdichte und elektrischen Feldstärke an maßgeblichen Immissionsorte

Lfd. Nr.	Abspannabsch von Mast- bis Mast	unitt Vor Mas		Minima Bodenabs im t Spannf (m)	stand Adresse	Gebäudenutzung	Flurstück Nr.	Gemarkung	Abstand vom linken Mast zum Objekt (m)	Seitl.Abstand vom Objekt zur Achse (+ rechts) (- links) (m)	Objekthöhe (Annahme) (m)	Maximale Magnetische Flussdichte am Objekt (in 1m über EOK) (µT)	Maximale Magnetische Flussdichte am Objekt (in Objekthohe) (μT)	Maximale elektrische Feldstärke am Objekt (in 1m über EOK) (kV/m)	Maximale elektrische Feldstärke am Objekt (in Objekthöhe) (kV/m)	Abstand vom linken Mast zum Flurstück (m)	Seitl. Abstand von Flurstück zur Achse (+ rechts) (- links) (m)	Maximale Magnetische Flussdichte auf dem Flurstück (in 1m über EOK) (µT)	Maximale elektrische Feldstärke auf dem Flurstück (in 1m über EOK) (kV/m)	Berechnet/ Anzeige erstellt	Bemerkunken
1	13 - 17	16	17	15,4	91798 Weiboldshausen	Sondernutzung Kläranlage	429	Weiboldshausen	129	-26	6	-	-	-	-	139	+8	7,8 µt	0.46 kV/m	Anlage 3.1	die 20-kV-Freileitung (N-ERGIE) wurde bei der Berechnung berücksichtigt
2	17 - 24	21	22	9,8	91798 Weiboldshausen	Landwirtschaftliches Gebäude	115	Weiboldshausen	216	-54	6	1,3 μΤ	1,4 μΤ	0,1 kV/m	0,1 kV/m	187	-9,6	13,7 µt	0,83 kV/m	Anlage 3.2	
3	17 - 24	23	24	10,0	Holzgasse, 91798 Weiboldshausen	Landwirtschaftliches Gebäude	810	Weiboldshausen	193	-26	4	5.4 μT	6.2 µt	0.39 kV/m	0.39 kV/m	212	-11	8.8 µt	0.57 Kv/m	Anlage 3.3	
4	58 - 64	58	59	10,2	91790 Burgsalach	Landwirtschaftliches Gebäude	211	Burgsalach	214	-24	2,5	4.3 µt	4.7 µt	0.33 kV/m	0.34 kV/m	186	+7,4	9.8 µt	0.6 kV/m	Anlage 3.4	

110-kV-Ltg. Weißenburg-Preith T014 Abschnitt 1: Weißenburg-Kaldorf M 150-M 88 Ber. Werte der magnetischen Flussdichte und elektrischen Feldstärke im Einwirkungsbereich an repräsentative Bezugspkt.

Lfd. Nr.	Abspann- abschnitt von Mast - bis Mast	Von Mast	Bis Mast	Minimalen Bodenabstand im Spannfeld (m)	n Adresse	Gebäudenutzung	Flurstück Nr.	Gemarkung	Abstand vom linken Mast zum Objekt (m)	Seitl.Abstand vom Objekt zur Achse (+ rechts) (- links) (m)	Objekthöhe (angenommen) (m)	Abstand vom linken Mast zum Flurstück (m)	Seitl. Abstand von Flurstück zur Achse (+ rechts) (- links) (m)	Maximale Magnetische Flussdichte am Bezugspunkt (in 1m Höhe) (μT)	Maximale elektrische Feldstärke am Bezugspunkt (in 1m Höhe) (kV/m)	Bemerkung
1	2 - 8	5	6	10,8	Schmalwiesen 32, 91781 Weißenburg in Bayern	Wohnbebauung (Linksseitig)	2592	Weimersheim	157	-93	6,5	168	-58	7,6 µT	0,59 kV/M	die 20-kV.Freiltg. N-Ergie wurde bei der Berechnung berücksichtigt
2	2 - 8	6	7	12,6	Schmalwiesen 25A, 91781 Weißenburg in Bayern	Wohnbebauung (Linksseitig)	2579/1	Weimersheim	120	-48	9,5	118	-39	7,2 µt	0,54 kV/m	die 20-kV.Freiltg. N-Ergie wurde bei der Berechnung berücksichtigt
3	9 - 12	10	11	10,9	Bräumühle 1, 91792 Ellingen	Landwirtschaftliches Gebäude (Linksseitig)	558	Ellingen	82	-77	10	108	-76	8,5 µt	0,64 kV/m	die 110-kV-Ltg Petersgmünd- Weißenburg wurde bei der Berechnung berücksichtigt
4	9 -12	11	12	12,3	Nürnberger Str. 77, 91781 Weißenburg in Bayern	Betriebsgebäude (Rechtsseitig)	1173/3	Weißenburg in Bayern	86	92	7,5	91	+72	4,6 µt	0,25 kV/m	die 110-kV-Ltg Petersgmünd- Weißenburg wurde bei der Berechnung berücksichtigt
5	12 - 13	12	13	10,8	Nürnberger Straße 76, 91781 Weißenburg	Betriebsgebäude (Rechtsseitig)	1276	Weißenburg in Bayern	21	150	13	14	133	3,5 µt	0,19 kV/m	die 110-kV-Ltg Petersgmünd- Weißenburg wurde bei der Berechnung berücksichtigt
6	17 - 24	20	21	11,6	Ellgasse 2A, 91798 Weiboldshausen	Wohnbebauung (Linksseitig)	110/1	Weiboldshausen	191	-155	6	178	-141	5,7 µt	0,44 kV/m	
7	17 - 24	22	23	10,0	91798 Weiboldshausen	Landwirtschaftliches Gebäude (Linksseitig)	76	Weiboldshausen	88	-108	7	86	-87	4,7 μΤ	0,35 kV/m	
8	24 - 28	24	25	13,0	Holzgasse, 91798 Weiboldshausen	Landwirtschaftliches Gebäude	1025	Weiboldshausen	63	43	3,5	15	11	4,2 μt	0,28 kV/m	
9	24 - 28	26	27	11,2	91799 Weiboldshausen	Landwirtschaftliches Gebäude (Linksseitig)	830	Weiboldshausen	153	-71	7,5	163	-53	6,2 µt	0,48 kV/m	
10	48 - 58	56	57	12,8	91790 Burgsalach	Landwirtschaftliches Gebäude (Linksseitig)	251	Burgsalach	158	-102	6,5	78	-56	5,8 µT	0,44 kV/m	
11	58 - 64	59	60	11,6	Burgusstraße 66, 91790 Burgsalach	Sportfläche (Rechtsseitig)	1548	Burgsalach	96	+53	5,5	3	+53	8,1 µt	0,62 kV/m	
12	58 - 64	60	61	10,9	Kirschbaumweg 24a, 91790 Burgsalach	Gebäude (Linksseitig)	342/4	Burgsalach	44	-143	_	38	-137	8,3 µt	0,65 kV/m	
13	58 - 64	61	62	10,4	Am Römerturm 10, 91790 Burgsalach	Gebäude (Linksseitig)	343/7	Burgsalach	2	-178	_	65	177	6,6 µt	0,53 kV/m	


Anzeige für Niederfrequenzanlagen	
für Vermerk der Behörde	
An die zuständige Behörde	Betreiber
	N – Ergie Netz GmbH Sandreuthstraße 21 90441 Nürnberg Az.
	zanlage (50 Hz, 16 2/3 Hz) Verordnung zur Durchführung des Bundes- er elektromagnetische Felder - 26. BlmSchV)
mmileoieneeshalegeseless (vereranang as	Zutreffendes bitte ankreuzen
Art der Anlage Freileitung	☐ Elektroumspannanlage
Erdkabel]
Neuerrichtung	wesentliche Änderung
Standardanlage	nung der Standardanlage*)
Inbetriebnahme	genstand der wesentlichen Änderung
L L	raße, Hausnummer, Flurstück, Bebauungsplan)
91798 Weiboldshausen, Flurstück Nr. 429, Gemarkung We	eiboldhausen
Identifikationsnummer/ Anlagenbezeic	hnung des Betreibers
110-kV-Freileitung Weißenburg – Abschnitt 1: Weißenburg – Kaldo	•
Die beigefügten Anlagen sind Bestandte	eil dieser Anzeige.
Ort, Datum	Unterschrift/ Stempel
Anlagen:	ende oweit erforderlich)


^{*)} nach den durch den Betreiber vorgelegten Standardunterlagen

Datenblatt zur Freileitung 110-kV-Freileitung Weißenburg – Preith, T014 Spannfeld zwischen Mast 16 und Mast 17

Masttyp:

Mast 16; Tragmast (T – 24)
Mast 17; Winkelabspannmast (WA160 – 20)

Belegung:

Leiterseil: 2x3x2 AL/ST 380/50 (2 Bündel horizontal) Erdseil Luftkabel: OPGW 97 – AL3/48 – A20SA

Berechnungsparameter

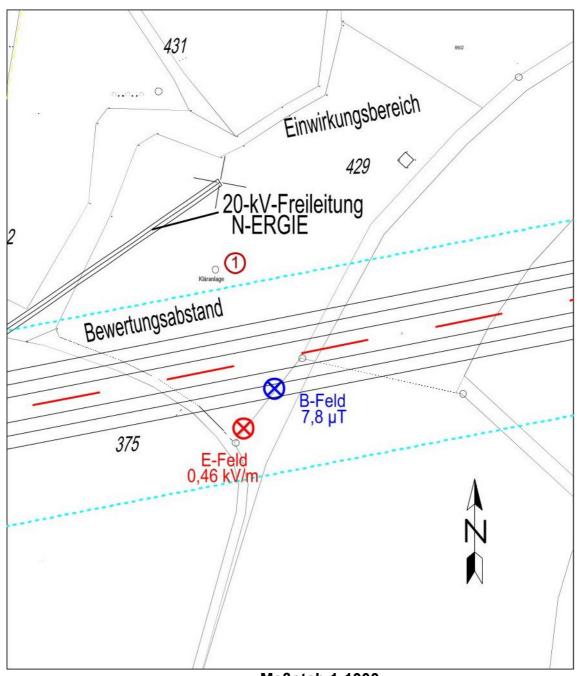
Höchste betriebliche Anlagenauslastung: 123 kV

Aufgelegte Spannungssysteme – gepl. Zustand

Nennspannung: 110 kV

Maximalen betrieblichen Dauerstromes:

Beantragter Grenzstrom: 1680 A


Minimaler Bodenabstand ermittelt nach DIN 0210/5.62:

Spannfeld zwischen Mast 16 - Mast 17: 15,4 m

Nachweis über die Einhaltung der E/M-Felder gem. 26. BlmSchV

Maßgebender Immissionsort

91798 Weisboldshausen Flurstück Nr. 429, Gemarkung Weißboldshausen (zwischen Mast Nr. 16 und Mast Nr. 17)

Maßstab 1:1000

Legende:

Magnetische Flussdichte in 1 m über EOK / Flurstück Elektrische Feldstärke in 1 m über EOK / Flurstück

Immissionsort gem. 26. BImSchV

Im Lageplan ist folgendes dargestellt:

- der Standort der Anlage,
- die maßgebenden Immissionsorte (gem. § 3 Satz 1 und § 4) mit
 - ☑ den dort durch die Anlage zu erwartenden maximalen elektrischen Feldstärken und magnetischen Flussdichten
- die Standorte und Arten anderer eigener Niederfrequenzanlagen sowie der Niederfrequenzanlagen anderer Betreiber (soweit diese bekannt sind), die an den Immissionsorten relevante Immissionsbeiträge verursachen können.

Ergebnisse

Maßgeblicher Immissionsort

91798 Weidboldshausen

Flurstück Nr. 429, Gemarkung Weißboldshausen

Flurstück

Abstand zum Flurstück (bezogen auf magnetisches Feld):

Mindestabstand vom linken Mast: ca. 139 m

Seitlicher Abstand zur Achse: ca. +8 m (+ rechts, - links)

In 1 m Höhe über dem Erdboden auf dem Flurstück beträgt die maximale:

magnetische Flussdichte 7,8 μT elektrische Feldstärke 0,46 kV/m

Bei der Berechnung wurde die kreuzende 20-kV-Freileitung (N-ERGIE) berücksichtigt.

→ Uneingeschränkte Einhaltung der Grenzwerte der 26 BlmSchV

Grenzwerte nach der 26 BlmSchV:

magnetische Flussdichte 300 µT elektrische Feldstärke 5 kV/m

Berechnungsgröße: ungestörtes magnetisches und elektrisches

Wechselfeld unter max. Last entsprechend DIN VDE 0848 und 26.

BlmSchV, Frequenz 16,7 Hz

Berechnungsgrundlage: zur Verfügung gestellten Planungsdaten

Berechnungsmethode: als Horizontalschnitte in 1,0 m über EOK auf dem Flurstück

Berechnungsraster: 1,0 m x 1,0 m

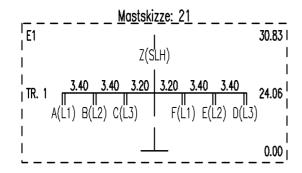
Programme: WinField 2024 der Firma FGEU mbH Berlin

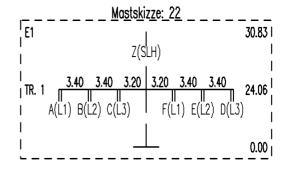
Antragsunterlagen erstellt durch:

Firma SPIE SAG GmbH, High Voltage | Bereich CeGIT Landshuter Straße 65 84030 Ergolding

Ergolding, 18.11.2024 i.A. gez. Lucia Wandra

Anzeige für Niederfrequenzanlagen				
für Vermerk der Behörde				
An die zuständige Behörde	Betreiber			
	N-Ergie Netz GmbH Sandreuthstraße 21 90441 Nürnberg Az.			
Anzeige einer Niederfrequenzanlag gem. § 7 Abs. 2 der Sechsundzwanzigsten Verordnur Immissionsschutzgesetzes (Verordnung über elektron	ng zur Durchführung des Bundes-			
Art der Anlage Freileitung	Elektroumspannanlage			
Erdkabel				
Neuerrichtung	vesentliche Änderung			
Standardanlage	Standardanlage*)			
voraussichtlicher Termin der Inbetriebnahme Ersatzneuba	d der wesentlichen Änderung			
Standort der Anlage (PLZ, Ort, ggf. Straße, Ha	usnummer, Flurstück, Bebauungsplan)			
91798 Weiboldshausen, Flurstück Nr. 115, Gemarkung Weibolds	hausen			
Identifikationsnummer/ Anlagenbezeichnung de	es Betreibers			
110-kV-Freileitung Weißenburg Preith, T014 Abschnitt 1: Weißenburg – Kaldorf M 150 – M 88				
Die beigefügten Anlagen sind Bestandteil dieser Anzeige.				
Ort, Datum	Unterschrift/ Stempel			
Anlagen: Datenblatt Mastbilder Lageplan mit Legende Übersichtsplan (soweit erfe	orderlich)			


^{*)} nach den durch den Betreiber vorgelegten Standardunterlagen


Datenblatt zur Freileitung 110-kV-Freileitung Weißenburg – Preith, T014 Spannfeld zwischen Mast 21 und Mast 22

Typ der Freileitung: 50 Hz ☐ 16 2/3 Hz ☐ <u>Übertragungsleitung</u> ☐ ☐ Verteilungsleitung ☐

Masttyp:

Mast 21; Tragmast (T – 24) Mast 22; Tragmast (T – 24)

Belegung:

Leiterseil: 2x3x2 AL/ST 380/50 (2 Bündel horizontal) Erdseil Luftkabel: OPGW 97 – AL3/48 – A20SA

Berechnungsparameter

Höchste betriebliche Anlagenauslastung: 123 kV

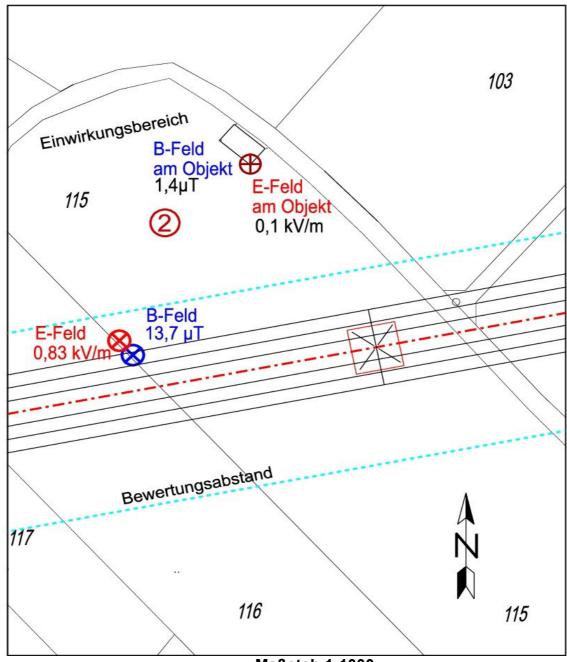
Aufgelegte Spannungssysteme – gepl. Zustand

Nennspannung: 110 kV

Maximalen betrieblichen Dauerstromes:

Beantragter Grenzstrom: 1680 A

Minimaler Bodenabstand ermittelt nach DIN 0210/5.62:


Spannfeld zwischen Mast 21 - Mast 22: ca. 9,8 m

Nachweis über die Einhaltung der E/M-Felder gem. 26. BlmSchV

Maßgebender Immissionsort

91798 Weiboldshausen Flurstück Nr. 115, Gemarkung Weiboldshausen

(zwischen Mast Nr. 21 und Mast Nr. 22)

Maßstab 1:1000

Legende:

🛇 B- und E-Feld am Objekt in Objekthöhe

Magnetische Flussdichte in 1 m über EOK / Flurstück

Elektrische Feldstärke in 1 m über EOK / Flurstück

1) Immissionsort gem. 26. BImSchV

Im Lageplan ist folgendes dargestellt:

- der Standort der Anlage,
- die maßgebenden Immissionsorte (gem. § 3 Satz 1 und § 4) mit
 - □ den dort durch die Anlage zu erwartenden maximalen elektrischen Feldstärken und magnetischen Flussdichten
- die Standorte und Arten anderer eigener Niederfrequenzanlagen sowie der Niederfrequenzanlagen anderer Betreiber (soweit diese bekannt sind), die an den Immissionsorten relevante Immissionsbeiträge verursachen können.

Ergebnisse

Maßgeblicher Immissionsort

91798 Weiboldshausen

Flurstück Nr. 115, Gemarkung Weiboldshausen

Flurstück

Abstand zum Flurstück (bezogen auf magnetisches Feld):

Mindestabstand vom linken Mast: ca. 187 m

Seitlicher Abstand zur Achse: ca. –9,6 m (+ rechts, - links)

In 1 m Höhe über dem Erdboden auf dem Flurstück beträgt die maximale:

magnetische Flussdichte 13,7 μT elektrische Feldstärke 0.83 kV/m

Gebäude

Abstand zum Gebäude (bezogen auf magnetisches Feld):

Mindestabstand vom linken Mast: ca. 216 m

Seitlicher Abstand zur Achse: ca. -54 m (+rechts, -links)

In 6 m Höhe über dem Erdboden am Objekt beträgt die maximale:

magnetische Flussdichte 1,4 μT elektrische Feldstärke 0,1 kV/m

→ Uneingeschränkte Einhaltung der Grenzwerte der 26 BlmSchV

Grenzwerte nach der 26 BlmSchV:

magnetische Flussdichte 300 μT elektrische Feldstärke 5 kV/m

Berechnungsgröße: ungestörtes magnetisches und elektrisches

Wechselfeld unter max. Last entsprechend DIN VDE 0848 und 26.

BlmSchV, Frequenz 16,7 Hz

Berechnungsgrundlage: zur Verfügung gestellten Planungsdaten

Berechnungsmethode: als Horizontalschnitte in 1,0 m über EOK auf dem Flurstück

und in 6 m am Gebäude

Berechnungsraster: 1,0 m x 1,0 m

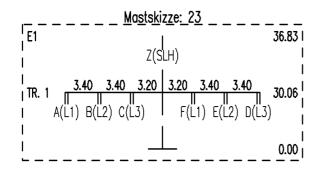
Programme: WinField der Firma FGEU mbH Berlin

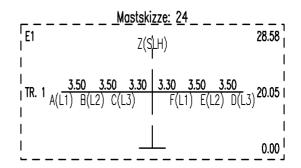
Antragsunterlagen erstellt durch:

Firma SPIE SAG GmbH, High Voltage | Bereich CeGIT Landshuter Straße 65 84030 Ergolding

Ergolding, 18.11.2024 i.A. gez. Lucia Wandra

für Vermerk der Behö	örde			
An die zuständige B	ehörde	E	Betreiber	
		9	N-Ergie Netz GmbH Sandreuthstraße 21 00441 Nürnberg Az.	
gem. § 7 Abs. 2 der S	- Sechsundzwanzig	sten Verordnun	g (50 Hz, 16 2/3 Hz) g zur Durchführung des Bundes- nagnetische Felder - 26. BlmSchV)	
			Zutreffendes bitte ankreuzen	
Art der Anlage	Freileitung		Elektroumspannanlage	
	Erdkabel			
Net	uerrichtung	□ we	esentliche Änderung	
Standardanlage	Beze	eichnung der S	Standardanlage*)	
voraussichtlicher Inbetriebnahme	Termin der	Gegenstand Ersatzneuba	der wesentlichen Änderung	
Standort der Anlag	ge (PLZ, Ort, gg	f. Straße, Hau	snummer, Flurstück, Bebauungsplan)	
91798 Weibolds Flurstück Nr. 81		•	ausen	
Identifikationsnum	mer/ Anlagenbe	zeichnung des	s Betreibers	
110-kV-Freileitung Weißenburg Preith, T014 Abschnitt 1: Weißenburg – Kaldorf M 150 – M 88				
Die beigefügten Anlagen sind Bestandteil dieser Anzeige.				
Ort, Datum			Unterschrift/ Stempel	
Anlagen: 🗮	Datenblatt Mastbilder Lageplan mit Übersichtspla	Legende In (soweit erfo	rderlich)	


^{*)} nach den durch den Betreiber vorgelegten Standardunterlagen


Datenblatt zur Freileitung 110-kV-Freileitung Weißenburg – Preith, T014 Spannfeld zwischen Mast 23 und Mast 24

Typ der Freileitung: 50 Hz ☐ 16 2/3 Hz ☐ <u>Übertragungsleitung</u> ☐ ☐ Verteilungsleitung ☐

Masttyp:

Mast 23; Tragmast (T - 30) Mast 24; WE 160 - 20

Belegung:

Leiterseil: 2x3x2 AL/ST 380/50 (2 Bündel horizontal) Erdseil Luftkabel: OPGW 97 – AL3/48 – A20SA

Berechnungsparameter

Höchste betriebliche Anlagenauslastung: 123 kV

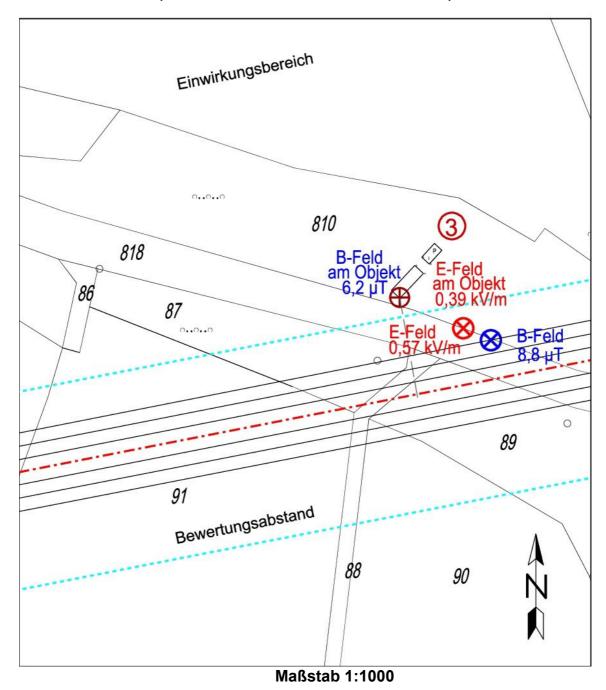
Aufgelegte Spannungssysteme – gepl. Zustand

Nennspannung: 110 kV

Maximalen betrieblichen Dauerstromes:

Beantragter Grenzstrom: 1680 A

Minimaler Bodenabstand ermittelt nach DIN 0210/5.62:


Spannfeld zwischen Mast 23 - Mast 24: ca. 10 m

Nachweis über die Einhaltung der E/M-Felder gem. 26. BlmSchV

Maßgebender Immissionsort

Holzgasse, 91798 Weiboldshausen Flurstück Nr. 810, Gemarkung Weiboldshausen

(zwischen Mast Nr. 23 und Mast Nr. 24)

Legende:

B- und E-Feld am Objekt in Objekthöhe

Magnetische Flussdichte in 1 m über EOK / Flurstück

Elektrische Feldstärke in 1 m über EOK / Flurstück

1 Immissionsort gem. 26. BlmSchV

Im Lageplan ist folgendes dargestellt:

- der Standort der Anlage,
- die maßgebenden Immissionsorte (gem. § 3 Satz 1 und § 4) mit
 - ☑ den dort durch die Anlage zu erwartenden maximalen elektrischen Feldstärken und magnetischen Flussdichten
- die Standorte und Arten anderer eigener Niederfrequenzanlagen sowie der Niederfrequenzanlagen anderer Betreiber (soweit diese bekannt sind), die an den Immissionsorten relevante Immissionsbeiträge verursachen können.

Ergebnisse

Maßgeblicher Immissionsort

91798 Weiboldshausen, Holzgasse

Flurstück Nr. 810, Gemarkung Weiboldshausen

Flurstück

Abstand zum Flurstück (bezogen auf magnetisches Feld):

Mindestabstand vom linken Mast: ca. 212 m

Seitlicher Abstand zur Achse: ca. -11 m (+ rechts, - links)

In 1 m Höhe über dem Erdboden auf dem Flurstück beträgt die maximale:

magnetische Flussdichte 8,8 μT elektrische Feldstärke 0,57 kV/m

Gebäude

Abstand zum Gebäude (bezogen auf magnetisches Feld):

Mindestabstand vom linken Mast: ca. 193 m

Seitlicher Abstand zur Achse: ca. -26 m (+rechts, -links)

In 4 m Höhe über dem Erdboden am Objekt beträgt die maximale:

magnetische Flussdichte 6,2 μT elektrische Feldstärke 0,39 kV/m

→ Uneingeschränkte Einhaltung der Grenzwerte der 26 BlmSchV

Grenzwerte nach der 26 BlmSchV:

magnetische Flussdichte 300 μT elektrische Feldstärke 5 kV/m

Berechnungsgröße: ungestörtes magnetisches und elektrisches

Wechselfeld unter max. Last entsprechend DIN VDE 0848 und 26.

BlmSchV, Frequenz 16,7 Hz

Berechnungsgrundlage: zur Verfügung gestellten Planungsdaten

Berechnungsmethode: als Horizontalschnitte in 1,0 m über EOK auf dem Flurstück

und in 4 m am Gebäude

Berechnungsraster: 1,0 m x 1,0 m

Programme: WinField der Firma FGEU mbH Berlin

Antragsunterlagen erstellt durch:

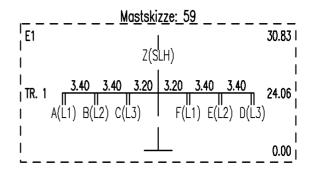
Firma SPIE SAG GmbH, High Voltage | Bereich CeGIT Landshuter Straße 65 84030 Ergolding

Ergolding, 18.11.2024 i.A. gez. Lucia Wandra

Anzeige für Niederfrequenzanlagen					
für Vermerk der Behöi	^r de				
An die zuständige Be	ehörde	ı	Betreiber		
		;	N - Ergie Netz GmbH Sandreuthstraße 21 90441 Nürnberg Az.		
gem. § 7 Abs. 2 der S	echsundzwanzig	sten Verordnur	e (50 Hz, 16 2/3 Hz) ng zur Durchführung des Bundes- nagnetische Felder - 26. BImSchV)		
Art dor Anlago	Eroiloituno		Zutreffendes bitte ankreuzen		
Art der Anlage	Freileitung Erdkabel		Elektroumspannanlage		
	Етикареі				
Neu	Neuerrichtung ☐ wesentliche Änderung ⊠				
Standardanlage	Beze	eichnung der	Standardanlage*)		
voraussichtlicher T Inbetriebnahme	voraussichtlicher Termin der Gegenstand der wesentlichen Änderung Inbetriebnahme Ersatzneubau				
Standort der Anlag	e (PLZ, Ort, gg		ısnummer, Flurstück, Bebauungsplan)		
91790 Burgsalad Flurstück Nr. 21	•	g Burgsalac	h		
Identifikationsnumr	ner/ Anlagenbe	zeichnung de	s Betreibers		
110-kV-Freileitu	•	•			
Abschnitt 1: We					
Ort, Datum			Unterschrift/ Stempel		
Anlagen: 🗵 🗵	Datenblatt Mastbilder Lageplan mit Übersichtspla	Legende an (soweit erfo	orderlich)		

^{*)} nach den durch den Betreiber vorgelegten Standardunterlagen


Datenblatt zur Freileitung 110-kV-Freileitung Weißenburg – Preith, T014 Spannfeld zwischen Mast 58 und Mast 59


Typ der Freileitung: 50 Hz ☐ 16 2/3 Hz ☐ Übertragungsleitung ☐

<u>Ubertragungsleitung</u> Verteilungsleitung

Masttyp:

Mast 58; Tragmast (T - 24) Mast 59; Tragmast (T - 18)

Belegung:

Leiterseil: 2x3x2 AL/ST 380/50 (2 Bündel horizontal) Erdseil Luftkabel: OPGW 97 – AL3/48 – A20SA

Berechnungsparameter

Höchste betriebliche Anlagenauslastung: 123 kV

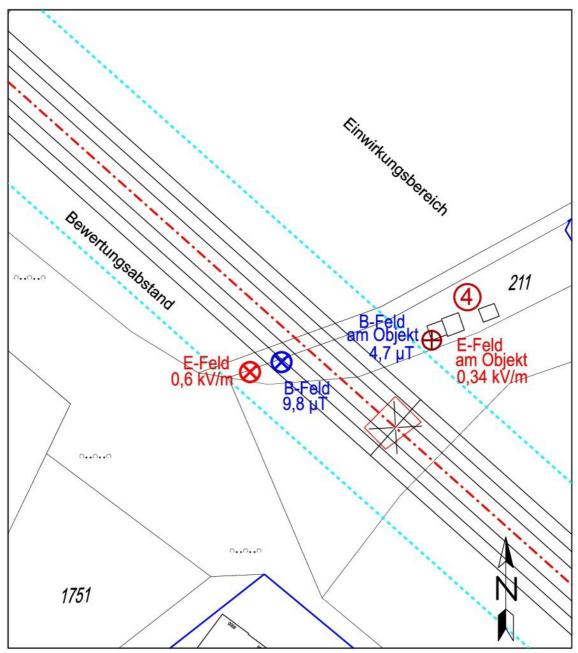
Aufgelegte Spannungssysteme – gepl. Zustand

Nennspannung: 110 kV

Maximalen betrieblichen Dauerstromes:

Beantragter Grenzstrom: 1680 A

Minimaler Bodenabstand ermittelt nach DIN 0210/5.62:


Spannfeld zwischen Mast 58 - Mast 59: ca. 10,2 m

Nachweis über die Einhaltung der E/M-Felder gem. 26. BlmSchV

Maßgebender Immissionsort

91790 Burgsalach Flurstück Nr. 211, Gemarkung Burgsalach

(zwischen Mast Nr. 58 und Mast Nr. 59)

Maßstab 1:1000

Legende:

B- und E-Feld am Objekt in Objekthöhe

Magnetische Flussdichte in 1 m über EOK / Flurstück

Elektrische Feldstärke in 1 m über EOK / Flurstück

1 Immissionsort gem. 26. BlmSchV

Im Lageplan ist folgendes dargestellt:

- der Standort der Anlage,
- die maßgebenden Immissionsorte (gem. § 3 Satz 1 und § 4) mit
 - ☑ den dort durch die Anlage zu erwartenden maximalen elektrischen Feldstärken und magnetischen Flussdichten
- die Standorte und Arten anderer eigener Niederfrequenzanlagen sowie der Niederfrequenzanlagen anderer Betreiber (soweit diese bekannt sind), die an den Immissionsorten relevante Immissionsbeiträge verursachen können.

Ergebnisse

Maßgeblicher Immissionsort

91790 Burgsalach

Flurstück Nr. 211, Gemarkung Burgsalach

Flurstück

Abstand zum Flurstück (bezogen auf magnetisches Feld):

Mindestabstand vom linken Mast: ca. 186 m

Seitlicher Abstand zur Achse: ca. +7,4 m (+ rechts, - links)

In 1 m Höhe über dem Erdboden auf dem Flurstück beträgt die maximale:

magnetische Flussdichte 9,8 μT elektrische Feldstärke 0,6 kV/m

Gebäude

Abstand zum Gebäude (bezogen auf magnetisches Feld):

Mindestabstand vom linken Mast: ca. 214 m

Seitlicher Abstand zur Achse: ca. -24 m (+rechts, -links)

In 2,5 m Höhe über dem Erdboden am Objekt beträgt die maximale:

magnetische Flussdichte 4,7 μT elektrische Feldstärke 0,34 kV/m

→ Uneingeschränkte Einhaltung der Grenzwerte der 26 BlmSchV

Grenzwerte nach der 26 BlmSchV:

magnetische Flussdichte 300 μT elektrische Feldstärke 5 kV/m

Berechnungsgröße: ungestörtes magnetisches und elektrisches

Wechselfeld unter max. Last entsprechend DIN VDE 0848 und 26.

BlmSchV, Frequenz 16,7 Hz

Berechnungsgrundlage: zur Verfügung gestellten Planungsdaten

Berechnungsmethode: als Horizontalschnitte in 1,0 m über EOK auf dem Flurstück

und in 2,5 m am Gebäude

Berechnungsraster: 1,0 m x 1,0 m

Programme: WinField der Firma FGEU mbH Berlin

Antragsunterlagen erstellt durch:

Firma SPIE SAG GmbH, High Voltage | Bereich CeGIT Landshuter Straße 65 84030 Ergolding

<u>Ergolding, 18.11.2024</u> <u>i.A. gez. Lucia Wandra</u>