Verkehrsprojekt Deutsche Einheit - Schiene Nr. 8
Ausbaustrecke Nürnberg - Ebensfeld

Abschnitt Nürnberg Rangierbahnhof - Eltersdorf

Planfeststellung Bau-km 4,935 - 13,500

Baugrund, Geologie, Hydrogeologie

Anlage 14.2
Wasserrechtliche Tatbestände

Wir planen und bauen im Auftrag der Deutschen Bahn
Planfeststellung

ABS Nürnberg-Ebensfeld
Planfeststellungsabschnitt Nürnberg Rbf - Eltersdorf
Bau-km 4,935 - 13,500

Anlage 14.2:
Wasserrechtliche Tatbestände

Planungsgesellschaft Bahnbau
Deutsche Einheit mbH
Projektzentrum Erfurt
Geibelstraße 28/29
99096 Erfurt

im Auftrag und in Abstimmung mit der Deutschen Bahn

Bearbeitung:

Grundwasser und Gewässer:
igi Niedermeyer Institute
UNTERSUCHEN BERATEN PLANEN GmbH
Hohentrüdinger Straße 11
91747 Westheim

Entwässerung und Vorfluter:
Planungsgemeinschaft ABS Nürnberg - Forchheim
GRE - Gauff Rail Engineering
Obermeyer Planen + Beraten
Burgschmietstraße 2 - 4
90419 Nürnberg

Erfurt, März 1994
<table>
<thead>
<tr>
<th>Inhaltssverzeichnis</th>
<th>Seite</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Vorbemerkungen</td>
<td></td>
</tr>
<tr>
<td>2. BW-Nr. 5.1 (km 4,935 - 5,950)</td>
<td></td>
</tr>
<tr>
<td>Deponie Uffenheimer Straße</td>
<td></td>
</tr>
<tr>
<td>BW-Nr. 5.3 (km 4,935 - 5,035)</td>
<td></td>
</tr>
<tr>
<td>Sickermulde der Deponie</td>
<td></td>
</tr>
<tr>
<td>BW-Nr. 5.6 (km 5,055 - 5,760)</td>
<td></td>
</tr>
<tr>
<td>Sickermulde der Deponie</td>
<td></td>
</tr>
<tr>
<td>BW-Nr. 5.7 (km 5,050 - 5,700)</td>
<td></td>
</tr>
<tr>
<td>Verlegung Uffenheimer Straße</td>
<td></td>
</tr>
<tr>
<td>BW-Nr. 5.20 (km 5,600 - 5,940)</td>
<td></td>
</tr>
<tr>
<td>Sickermulde der Deponie</td>
<td></td>
</tr>
<tr>
<td>3. BW-Nr. 5.8 (km 5,220 - 5,625)</td>
<td></td>
</tr>
<tr>
<td>Verlegung Wirtschaftsweg</td>
<td></td>
</tr>
<tr>
<td>BW-Nr. 5.9 (km 5,235 - 5,790)</td>
<td></td>
</tr>
<tr>
<td>Schallschutzwand östl. der Bahn</td>
<td></td>
</tr>
<tr>
<td>BW-Nr. 5.10 (km 5,235 - 5,645)</td>
<td></td>
</tr>
<tr>
<td>Sickergaben des Schallschutzwalls</td>
<td></td>
</tr>
<tr>
<td>4. BW-Nr. 5.11 (km 5,377 - 6,540)</td>
<td></td>
</tr>
<tr>
<td>Verlegung der Gleise Nür Rbf-Fürth Hbf</td>
<td></td>
</tr>
<tr>
<td>BW-Nr. 5.13 (km 5,400 - 6,380)</td>
<td></td>
</tr>
<tr>
<td>Verbreitung des Bahnabschnitts</td>
<td></td>
</tr>
<tr>
<td>BW-Nr. 5.14 (km 5,400 - 7,300)</td>
<td></td>
</tr>
<tr>
<td>Bahnentwässerung</td>
<td></td>
</tr>
<tr>
<td>5. BW-Nr. 5.16 (km 5,510 - 6,200)</td>
<td></td>
</tr>
<tr>
<td>Südlicher Rampentrog Tunnel Pegnitz</td>
<td></td>
</tr>
<tr>
<td>6. BW-Nr. 5.17 (km 5,783)</td>
<td></td>
</tr>
<tr>
<td>Verlegung Rothenburger Straße</td>
<td></td>
</tr>
<tr>
<td>SBR Rothenburger Straße</td>
<td></td>
</tr>
<tr>
<td>7. BW-Nr. 6.1 (km 6,220)</td>
<td></td>
</tr>
<tr>
<td>Betriebsstation Süd, incl. Notausgang 1</td>
<td></td>
</tr>
<tr>
<td>8. BW-Nr. 6.2 (km 6,200 - 13,000)</td>
<td></td>
</tr>
<tr>
<td>Tunnel Pegnitz</td>
<td></td>
</tr>
<tr>
<td>9. BW-Nr. 7.3 (km 7,320)</td>
<td></td>
</tr>
<tr>
<td>Notausgang 2</td>
<td></td>
</tr>
<tr>
<td>10. BW-Nr. 7.6 (km 7,100 bis 7,300)</td>
<td></td>
</tr>
<tr>
<td>Sickerbecken</td>
<td></td>
</tr>
<tr>
<td>11. BW-Nr. 8.1 (km 8,377)</td>
<td></td>
</tr>
<tr>
<td>Notausgang 3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>BW-Nr.</td>
</tr>
<tr>
<td>---</td>
<td>--------</td>
</tr>
<tr>
<td>12.</td>
<td>9.1</td>
</tr>
<tr>
<td>13.</td>
<td>10.1</td>
</tr>
<tr>
<td>14.</td>
<td>11.1</td>
</tr>
<tr>
<td>15.</td>
<td>12.1</td>
</tr>
<tr>
<td>16.</td>
<td>12.6</td>
</tr>
<tr>
<td>17.</td>
<td>12.13</td>
</tr>
<tr>
<td>18.</td>
<td>13.1</td>
</tr>
<tr>
<td>19.</td>
<td>13.3</td>
</tr>
<tr>
<td>20.</td>
<td>13.5</td>
</tr>
<tr>
<td>21.</td>
<td>13.7</td>
</tr>
<tr>
<td>22.</td>
<td>13.8</td>
</tr>
<tr>
<td>23.</td>
<td>13.9</td>
</tr>
<tr>
<td>24.</td>
<td></td>
</tr>
</tbody>
</table>
1. Vorbemerkungen

Sollten im Zuge der Baumaßnahmen kontaminierte Grundwässer gefördert werden, die hinsichtlich der Qualität und der Ableitungskriterien nicht den einschlägigen Vorschriften entsprechen, so werden diese vor Einleitung in einen Vorfluter, Abwasserkanal oder Grundwasserkörper gereinigt.

2. BW-Nr. 5.1 (km 4,935 - 5,950)
Deponie Uffenheimer Straße
BW-Nr. 5.3 (km 4,935 - 5,035)
Sickermulde der Deponie
BW-Nr. 5.6 (km 5,055 - 5,760)
Sickermulde der Deponie
BW-Nr. 5.7 (km 5,050 - 5,700)
Verlegung Uffenheimer Straße
BW-Nr. 5.20 (km 5,600 - 5,940)
Sickermulde der Deponie

Grundwasser und Gewässer

Im Bereich des südlichen Voreinschnittes des Tunnels Pegnitz wird links der Güterzugstrecke die Deponie Uffenheimer Straße (BW-Nr. 5.1) errichtet. Die Deponie dient der Ablagerung der inerten Aushub- und Ausbruchmassen aus dem Tunnel Pegnitz und der südlichen Rampe.
Der Deponiekörper wird auf den quartären Sedimenten aufgeschüttet. Der Flurabstand zum oberen Grundwasserleiter (Quartär/Blasensandstein) beträgt bei Mittelwasser-Verhältnissen ca. 2,0 bis 2,5 m und bei Hochwasser-Verhältnissen rd. 0,5 bis 1,0 m. Die v.g. Flurabstände beziehen sich auf die Schienenoberkante des hier in Einschnittslage geführten Gleises Nürnberg Rangierbahnhof - Fürth Hauptbahnhof.

Bei ggf. notwendigen Bodenaustauschmaßnahmen kann sich ein kurzfristiger Eingriff in das obere Grundwasservorkommen ergeben.

Im Bereich der Deponie erfolgt eine Versickerung von Oberflächenwässern über Sickergräben (BW-Nr. 5.3, 5.6, 5.7 und 5.20) sowie über ein Sickerbecken (BW-Nr. 7.6) zwischen km 7,100 - 7,300 in das obere Grundwasservorkommen (s. Entwässerung und Vorfluter).

Entwässerung und Vorfluter

Das vom Deponiekörper zwischen der alten und der neuen Wallensteinstraße (km 4,935 - km 5,030) anfallende Oberflächenwasser wird, soweit es nicht großflächig versickert, in einem umlaufenden Sickergraben (BW-Nr. 5.3) gefaßt und dort linienhaft versickert. Der Graben erhält einen Notüberlauf in den städtischen Regenwasserkanal der Uffenheimer Straße, der in den Main-Donau-Kanal entwässert.

Die bahnabgewandten Deponieflächen zwischen der alten Wallensteinstraße und der derzeitigen Rothenburger Straße (km 5,050 - km 5,920) entwässern in Sickergräben (BW-Nr. 5.6 und 5.20) am Deponiefuß.

Die Entwässerung der bahnseitigen Böschungen, ca. 162 l/s, erfolgt über die Bahnentwässerung mit Versickerung im Sickerbecken km 7,100 - km 7,300 (BW-Nr. 7.6).

Der verlegte Wirtschaftsweg Uffenheimer Straße nutzt ebenfalls den Sickergraben (BW-Nr. 5.6) zur Entwässerung.
3. BW-Nr. 5.8 (km 5,220 - 5,625)
Verlegung Wirtschaftsweg
BW-Nr. 5.9 (km 5,235 - 5,790)
Schallschutzwand östl. der Bahn
BW-Nr. 5.10 (km 5,235 - 5,645)
Sickergraben des Schallschutzwalls

Grundwasser und Gewässer

Im Bereich des südlichen Voreinschnittes des Tunnels Pegnitz wird rechts der Güterzugstrecke ein Schallschutzwand (BW-Nr. 5.9) aus den inerten Aushub- und Ausbruchsmassen des Tunnels Pegnitz und der südlichen Rampe errichtet. Der Schallschutzwand wird auf den quartären Lockergesteinen gegründet. Der Flurabstand zum oberen Grundwasserleiter (Quartär/Blasensandstein) beträgt bei Mittelwasser-Verhältnissen rd. 2,0 bis 2,5 m und bei Hochwasser-Verhältnissen rd. 0,5 bis 1,0 m. Die v.g. Flurabstände beziehen sich auf die Schienenoberkante des hier in Einschnittslage geführten Gleises Nürnberg Rangierbahnhof - Fürth Hauptbahnhof. Bei ggf. notwendigen Bodenaustauschmaßnahmen kann sich ein kurzfristiger Eingriff in das obere Grundwasservorkommen ergeben.

Vom Schallschutzwand anfallendes Oberflächenwasser wird im oberen Grundwasserstockwerk versickert.

Entwässerung und Vorfluter

Das vom Schallschutzwand an der bahnabgewandten Seite anfallende Oberflächenwasser wird über eine umlaufende, abflußlose Sickermulde (BW-Nr. 5.10) gefaßt und versickert. Diese dient auch der Entwässerung des verlegten Wirtschaftsweg (BW-Nr. 5.8).

Die bahnseitigen Böschungen entwässern über die Bahnentwässerung in das neue Sickerbecken bei km 7,100 - km 7,300 (BW-Nr. 7.6). Die Einleitungsmenge beträgt ca. 61 l/s.
4. BW-Nr. 5.11 (km 5.377 - 6.540)
Verlegung der Gleise Nür Rbf-Fürth Hbf
BW-Nr. 5.13 (km 5.400 - 6.380)
Verbreiterung des Bahnabschnitts
BW-Nr. 5.14 (km 5.400 - 7.300)
Bahntwässerung

Grundwasser und Gewässer

Von km 5.377 bis 6.540 sind die bestehenden Gleise beidseitig des neu zu errichtenden südlichen Rampenbauwerkes (BW-Nr. 5.11) zu verlegen. Im Zuge dieser Maßnahme ist eine Verbreiterung des bestehenden Einschnittes von km 5.400 bis 6.380 auf maximal 35 m Breite notwendig. Die Einschnittstiefe von ca. 2,0 m wird beibehalten, wobei als Bauwerksunterlager die quartären Lockergesteine dienen.

Bezogen auf die Grabensohle der Bahntwässerung beträgt der Flurabstand zum oberen Grundwasserstockwerk ca. 1,8 bis 2,2 m bei Mittelwasser- und 0,3 bis 0,7 m bei Hochwasserverhältnissen. Die Sohlhöhen der bestehenden Entwässerungsgräben werden beibehalten und liegen damit ca. 1,0 bis 2,5 m über dem mittleren Grundwasser. Bei Hochwasserverhältnissen schneidet die Sohle der Gräben bereichsweise ca. 0,5 m in das Grundwasser ein, so daß eine Grundwasserspiegelbegrenzung auf Grabensohlniveau erfolgt. Bei ggf. notwendigen Bodenaustauschmaßnahmen kann sich ein kurzfristiger Eingriff in das obere Grundwasservorkommen ergeben.

Die Oberflächenwässer von km 5.000 bis 7.300 werden im oberen Grundwasserstockwerk versickert (BW-Nr. 7.6).

Entwässerung und Vorfluter

Das aus dem Streckenbereich von km 5,000 bis 7,300 anfallende Wasser, ca. 522 l/s, wird nicht mehr - wie bisher - über den verdolten Höfener Landgraben in die Kanalisation der Stadt Nürnberg abgeleitet, sondern zwischen km 7,100 und 7,300 in einem neu errichteten Sickerbecken (BW-Nr. 7.6) versickert.

5. BW-Nr. 5.16 (km 5,510 - 6,200)
Südlicher Rampentrog Tunnel Pegnitz

Grundwasser und Gewässer

Im Streckenabschnitt zwischen km 5,510 und km 6,200 (Tunnelportal) verläuft die Trasse im südlichen Rampentrog (BW-Nr. 5.16), wobei das ergiebige obere Grundwasserstockwerk im Quartär und Blasensandstein durchfahren wird. Ab km 5,510 schneidet das Bauwerk bei HHGW-Verhältnissen bis km 6,200 maximal 8 m tief in das Quartär/Blasensandstein-Grundwasservorkommen ein.

Während und nach Ende der Bauzeit wird sich durch den südlichen Rampentrog wegen seiner spitzwinkligen Lage zum allgemeinen Grundwasserabstrom, bei Ansatz von HHGW-Verhältnissen und ohne Berücksichtigung von Minimierungsmaßnahmen, ein Aufstau des Grundwasserspiegels im oberstromigen Bereich von bis zu 0,20 m sowie eine Absenkung des Grundwasserspiegels im unterstromigen Bereich von weniger als 0,10 m ergeben.

Entwässerung und Vorfluter

Das im südlichen Rampentrog anfallende Rest-, Lenz- und Niederschlagswasser, ca. 186 l/s, wird über Pumpen gehoben, dem Sickerbecken zwischen km 7,100 bis 7,300 (BW-Nr. 7.6) zugeleitet und im oberen Grundwasserstockwerk versickert.

6. BW-Nr. 5.17 (km 5.783)
Verlegung Rothenburger Straße
SBR Rothenburger Straße

Grundwasser und Gewässer

Als Ersatz für die aufzulassende Straßenüberführung in km 5,933 (BW-Nr. 5.22) wird in km 5,783 die Straßenüberführung Rothenburger Straße (BW-Nr. 5.18) neu errichtet. Im Zuge der Baumaßnahmen für die Widerlagergründungen kann ein kurzfristiger, bauseitlicher Eingriff in das obere Grundwasservorkommen nicht ausgeschlossen werden. Ein dauerhafter Eingriff ergibt sich jedoch nicht. Im Zuge der Umlegung und des Neubaus der Rothenburger Straße und einer 4-armigen Straßenkreuzung (BW-Nr. 5.17) ergibt sich kein wasserrechtlicher Tatbestand.

Entwässerung und Vorfluter

Die Entwässerung der Rothenburger Straße erfolgt über Straßeneinläufe und Längsleitungen, die an die Kanalisation der Stadt Nürnberg angeschlossen werden. Es sind ca. 247 l/s abzuleiten.
Das bei der Bauwerksentwässerung der Straßenüberführung anfallende Wasser, ca. 18 l/s, wird in die Bahntentwässerung und damit in das Sickerbecken zwischen km 7,100 - 7,300 (BW-Nr. 7.6) geleitet und im oberen Grundwasserstockwerk versickert.

7. BW-Nr. 6.1 (km 6,220)
Betriebsstation Süd, incl. Notausgang 1

Grundwasser und Gewässer

Bei km 6,220 wird die Betriebsstation Süd (BW-Nr. 6.1) inclusive des Notausgangs 1 des Tunnels Pegnitz als 8,2 m tiefer Schacht errichtet. Hierbei erfolgt ein bauzeitlicher Eingriff in das obere Grundwasservorkommen (Quartär/Blasensandstein). Das Bauwerk wird in offener Bauweise erstellt, wobei wesentliche Grundwasserabsenkungen durch geeignete Bauverfahren (dichte Spundwände o.ä.) unterbunden bzw. minimiert werden.

Das Bauwerk wird druckwasserdicht ausgebildet, so daß auf Dauer kein Zutageleiten von Grundwasser erforderlich ist. Vom Bauwerk anfallendes Oberflächenwasser wird über das Sickerbecken zwischen km 7,100 - 7,300 (BW-Nr. 7.6) im oberen Grundwasserstockwerk versickert.

Entwässerung und Vorfluter

Das vom Dach der Betriebsstation Süd anfallende Oberflächenwasser, ca. 2 l/s, wird in die Bahntentwässerung und somit in das Sickerbecken zwischen km 7,100 - 7,300 (BW-Nr. 7.6) geleitet und versickert.

Das bauzeitlich anfallende Grundwasser wird versickert bzw. der Kanalisation zugeführt.
8. BW-Nr. 6.2 (km 6,200 - 13,000)
Tunnel Pegnitz

Grundwasser und Gewässer

Von km 6,200 bis km 7,200 sowie von km 7,830 bis 8,450, greift der Tunnel Pegnitz (BW-Nr. 6.2) in das ergiebige obere Grundwasserstockwerk im Quartär und Blasensandstein ein, wobei der Tunnel überwiegend im grundwassererfüllten Blasensandstein liegt. Von km 7,200 bis 7,830 wird die mit hochdurchlässigten quartären Sedimenten gefüllte Leyher-Neusündersbühler Rinne durchquert, wobei in diesem Bereich der Wasserspiegel des oberen Grundwasserstockwerkes bis zu 21,5 m oberhalb der Tunnelsohle liegt. Im Bereich der Leyher-Neusündersbühler Rinne ist bei km 7,605 der Übergang von der offenen zur bergmännischen Bauweise. Ab km 7,740 schneidet das Bauwerk auch in die gering durchlässigen und gering ergiebigen Lehrbergschichten ein, wobei der Tunnel ab km 8,500 bis 10,600 fast vollständig in den Lehrbergschichten aufgefahren wird. Von km 8,450 bis 9,050 wird die mit hoch durchlässigen quartären Sedimenten gefüllte Pegnitzrinne unterquert und auf rd. 330 m von km 8,570 bis 8,900 in der Firste angeschnitten. Der Grundwasserspiegel des oberen Grundwasserstockwerkes liegt dabei 22 bis 26 m über der Tunnelsohle. Zwischen km 9,700 und km 9,900 erreichen die hydraulischen Potentiale - bezogen auf die Tunnelsohle - mit 2,9 bar bei MGW-Verhältnissen und 3,1 bar bei HGW-Verhältnisse im Bereich des Tunnels Pegnitz ihre Maximalwerte. Die Pegnitz wird bei Bau-km 9,16 mit der Tunnelfirste ca. 13,5 m unter der Gewässersohle unterfahren. Ab km 10,600 liegt das Bauwerk wieder überwiegend im Blasensandstein. Bei km 12,505 ist der Übergang von der bergmännischen zur offenen Bauweise.

Von km 12,65 bis 12,90 wird die mit hoch durchlässigen quartären Sedimenten gefüllte Kronacher Rinne durchquert; der Grundwasserspiegel liegt in diesem Bereich max. 11 m über der Tunnelsohle. Von km 12,90 bis 13,00 liegt der Tunnel im grundwassererfüllten Quartär und Blasensandstein.

Aufgrund der wasserwirtschaftlichen Situation mit zahlreichen privaten Grundwasserentnahmen sowie zur Vermeidung von Setzungsschäden im Umfeld der Trasse sind - insbesondere im Bereich der südlichen offenen Bauweise - Absenkungen des Grundwasserkörpers weitestgehend zu vermeiden.
Die südliche Baugrube (km 6,200 bis 7,605) wird mit einem Verfahren hergestellt, das eine Absenkung des Grundwasserspiegels außerhalb der Baugrube minimiert bzw. verhindert, wobei für das grundwasserführende Quartär bei geringer Lockergesteinsmächtigkeit dichte Spundwände und bei größerer Lockergesteinsmächtigkeit überschnittene Bohrpfahlwände vorgesehen sind.

Im Südteil des Tunnels Pegnitz, wo die bergmännisch aufzufahrende Tunnelstrecke die quartären Rinnen durchfährt bzw. unterfährt, sind zur Stabilisierung der Lockergesteine und zur Stützung des Grundwasserkörpers und somit zur Vermeidung von zu starken Grundwasserabsenkungen Sonderbauverfahren (z.B. Vereisungs- und/oder Injektionskörper) einzusetzen.

Im Bereich des Tunnels Pegnitz zwischen km 6,200 bis 13,000 wird sich sowohl bauzeitlich als auch nach Fertigstellung des Bauwerks der wasserrechtliche Tatbestand des Aufstauens und Umleitens von Grundwasser ergeben. Nachfolgend werden hierzu zusammenfassend Aussagen getroffen, wobei detaillierte Angaben der Ingenieur- und hydrogeologischen Stellungnahme sowie dem Bericht zu dem untergrundhydraulischen Modellrechnungen entnommen werden können.

Hinsichtlich des Aufstaus von Grundwasser oberstromig der Baumaßnahme werden sich bauzeitlich bei Ansatz von HHGW-Verhältnissen maximale Grundwasserspiegelanstiege von bis zu 35 cm ergeben. Die Beträge der Grundwasserspiegelabsenkungen unterstromig der Baumaßnahme werden bei Ansatz von HHGW-Verhältnissen bauzeitlich bis zu 45 cm betragen.

Entwässerung und Vorfluter

Das in der südlichen Baugrube (km 6,200 bis 7,605) anfallende Grund- und Niederschlagswasser sowie das, in der von Süden her bergmännisch aufzufahrenden Tunnelstrecke, anfallende Bergwasser wird über Pumpen gehoben und über den Höfener Landgraben der Kanalisation der Stadt Nürnberg zugeführt bzw. über das Sickerbecken zwischen km 7,100 bis 7,300 (BW-Nr. 7.6) versickert.

Das in der nördlichen Baugrube (km 12,505 bis 13,000) anfallende Rest-, Lenz- und Niederschlagswasser sowie das in der von Norden her bergmännisch aufzufahrenden Tunnelstrecke anfallende Bergwasser wird über Pumpen gehoben und gedrosselt in den Bucher Landgraben geleitet.

Im Endzustand wird im Tunnel evtl. anfallendes Schlepp- und Restwasser am Gradiententiefpunkt gesammelt und über den Notausgang 4 in die Kanalisation der Stadt Fürth geleitet.
9. BW-Nr. 7.3 (km 7,320)
 Notausgang 2

Grundwasser und Gewässer

Bei km 7,320 wird der Notausgang 2 (BW-Nr. 7.3) des Tunnels Pegnitz als 16,8 m tiefer Schacht errichtet. Im Zuge der Baumaßnahmen erfolgt ein bauzeitlicher Eingriff in das obere, ergiebige Grundwasservorkommen der hochdurchlässigen quartären Rinnenfüllungen der Leyher-Neusündersbühler Rinne.

Das Bauwerk wird in offener Bauweise erstellt, wobei Grundwasserabsenkungen außerhalb der Baugrube durch entsprechende Bauverfahren (dichte Spundwände, überschnittene Bohrpfahlwände o.ä.) verhindert bzw. minimiert werden. Das bauzeitlich in der Baugrube anfallende Grundwasser wird über eine Versickerung dem oberen Grundwasservorkommen wieder zugeführt bzw. in die städtische Kanalisation geleitet. Das Bauwerk wird druckwasserdicht ausgebildet, so daß nach Fertigstellung des Bauwerkes keine Grundwasserhaltung notwendig wird.

Entwässerung und Vorfluter

Im Endzustand erfolgt keine Entwässerung. Das bauzeitlich in der Baugrube anfallende Oberflächen- und Grundwasser wird in die städtische Kanalisation geleitet bzw. versickert.

10. BW-Nr. 7.6 (km 7,100 bis 7,300)
 Sickerbecken

Grundwasser und Gewässer

Zwischen km 7,100 und 7,300 wird ein Sickerbecken (BW-Nr. 7.6) errichtet. Der Grundwasserflurabstand im Bereich des Sickerbeckens beträgt bei MGW-Verhältnissen etwa 4 m und bei HHGW-Verhältnissen rd. 2,5 m. Die in dieses Sickerbecoken eingeleiteten Wässer werden in den quartären Lockergesteinen der Hauptterrasse und der Leyher-Neusündersbühler Rinne versickert.
Entwässerung und Vorfluter

In dieses Sickerbecken erfolgen Einleitungen aus folgenden Bauwerken:

- **BW-Nr. 5.1** Deponie Uffenheimer Straße ca. 162 l/s
- **BW-Nr. 5.9** Schallschutzwand ca. 61 l/s
- **BW-Nr. 5.14** Bahnentwässerung km 5,000 - 7,300 ca. 552 l/s
- **BW-Nr. 5.16** Südlicher Rampentrog Tunnel Pegnitz ca. 186 l/s
- **BW-Nr. 5.18** Straßenüberführung Rothenburger Straße ca. 18 l/s
- **BW-Nr. 6.1** Betriebsstation Süd ca. 2 l/s

Insgesamt werden ca. 981 l/s versickert. Das Becken wird auch zur Versickerung von Bauwassern aus dem südlichen Bauabschnitt und für das im HHW-Fall durch die Bahnentwässerung abgezogene Grundwasser genutzt. Das Beckenvolumen beträgt ca. 900 m³.

11. **BW-Nr. 8.1** (km 8,377)

Notausgang 3

Grundwasser und Gewässer

Bei km 8,337 wird der Notausgang 3 (BW-Nr. 8.1) des Tunnels Pegnitz als 26,1 m tiefer Schacht mit einem bergmännisch aufzufahrenden Verbindungsstollen zum Tunnel errichtet. Im Zuge der Baumaßnahmen erfolgt ein bauzeitlicher Eingriff in das obere Grundwasservorkommen des Blasensandsteines sowie in das gering ergiebige Grundwasservorkommen der Lehrbergschichten.

Das Schachtbauwerk wird in offener Bauweise erstellt, wobei Grundwasserabsenkungen außerhalb der Baugrube durch entsprechende Bauverfahren (dichte Spundwände, überschnittene Bohrpfahlwände, Injektionen und Plombierungen o.ä.) verhindert bzw. minimiert werden. Das Bauwerk wird druckwasserdicht ausgebildet, so daß nach Fertigstellung des Bauwerkes keine Grundwasserhaltung notwendig wird.
Entwässerung und Vorfluter

Im Endzustand erfolgt keine Entwässerung.
Das bauzeitlich in der Baugrube anfallende Oberflächen- und Grundwasser wird in die städtische Kanalisation abgeleitet.

12. BW-Nr. 9.1 (km 9,079)
Notausgang 4,
BW-Nr. 9.2 (km 9,079)
Entwässerungsleitung

Grundwasser und Gewässer

Bei km 9,079 wird der Notausgang 4 (BW-Nr. 9.1) des Tunnels Pegnitz als 34,2 m tiefer Schacht mit einem bergmännisch aufzufahrenden Verbindungstollen zum Tunnel errichtet. Im Zuge der Baumaßnahmen erfolgt ein bauzeitlicher Eingriff in das obere Grundwasservorkommen des Blasensandsteines sowie in das gering ergebige Grundwasservorkommen der Lehrbergschichten.

Das Schachtbauwerk wird in offener Bauweise erstellt, wobei Grundwasserabsenkungen außerhalb der Baugrube durch entsprechende Bauverfahren (dichte Spundwände, überschnittene Bohrpfahlwände, Injektionen und Plombierungen, Sonderbauverfahren wie Vereisungs- und/oder Injektionskörper) verhindert bzw. minimiert werden.

Das Bauwerk wird druckwasserdicht ausgebildet, so daß nach Fertigstellung des Bauwerkes keine Grundwasserhaltung notwendig wird.

Entwässerung und Vorfluter

Das im Tunnel anfallende Schlepp- und Restwasser wird am Gradiententiefpunkt gesammelt und über eine Rohrleitung (BW-Nr. 9.2) in die Kanalisation der Stadt Fürth geleitet.
Das bauzeitlich in der Baugrube anfallende Oberflächen- und Grundwasser wird in die städtische Kanalisation geleitet.

13. **BW-Nr. 10.1** (km 10,036)
Notausgang 5

Grundwasser und Gewässer

Bei km 10,036 wird der Notausgang 5 (BW-Nr. 10.1) des Tunnels Pegnitz als 33,7 m tiefer Schacht mit einem bergmännisch aufzufahrenden Verbindungsstollen zum Tunnel errichtet. Im Zuge der Baumaßnahmen erfolgt ein bauzeitlicher Eingriff in das obere Grundwasservorkommen der quartären Ablagerungen und des Blasensandsteines sowie in das gering ergiebige Grundwasservorkommen der Lehrberg- schichten.

Entwässerung und Vorfluter

Im Endzustand erfolgt keine Entwässerung.
Das bauzeitlich in der Baugrube anfallende Oberflächen- und Grundwasser wird in die städtische Kanalisation eingeleitet.
14. BW-Nr. 11.1 (km 11,126)
Notaustieg 6

Grundwasser und Gewässer

Bei km 11,126 wird der Notaustieg 6 (BW-Nr. 11.1) des Tunnels Pegnitz als 28,1 m tiefer Schacht mit einem bergmännisch aufzufahrenden Verbindungsstollen zum Tunnel errichtet. Im Zuge der Baumaßnahmen erfolgt ein bauzeitlicher Eingriff in das obere Grundwasservorkommen des Blasensandsteines sowie in das gering ergiebige Grundwasservorkommen der Lehrbergschichten.

Entwässerung und Vorfluter

Im Endzustand erfolgt keine Entwässerung.
Das bauzeitlich in der Baugrube anfallende Oberflächen- und Grundwasser wird in die städtische Kanalisation eingeleitet.

15. BW-Nr. 12.1 (km 12,208)
Notaustieg 7

Grundwasser und Gewässer

Bei km 12,208 wird der Notaustieg 7 (BW-Nr. 12.1) des Tunnels Pegnitz als 20,6 m tiefer Schacht mit einem bergmännisch aufzufahrenden Verbindungsstollen zum Tunnel errichtet. Im Zuge der Baumaßnahmen erfolgt ein bauzeitlicher Eingriff in das obere Grundwasservorkommen des Blasensandsteines sowie in das gering ergiebige Grundwasservorkommen der Lehrbergschichten.

Entwässerung und Vorfluter

Im Endzustand erfolgt keine Entwässerung. Das bauzeitlich in der Baugrube anfallende Oberflächen- und Grundwasser wird in die städtische Kanalisation eingeleitet.

16. BW-Nr. 12.6 (km 12.665 bis 13.500)
BAB-Entwässerung
BW-Nr. 12.7 (km 12.770 bis 13.000)
Erdwall

Grundwasser und Gewässer

Im Zuge der Baumaßnahme werden die in diesem Bereich bestehenden Entwässerungsanlagen der BAB A 73 bauzeitlich verlegt und nach Fertigstellung neu errichtet. Hinsichtlich des Grundwassers und der Gewässer ergeben sich keine neuen wasserrechtlichen Tatbestände.

Entwässerung und Vorfluter

17. **BW-Nr. 12.13 (km 12,975)**

Betriebsstation Nord, incl. Notausgang 8

Grundwasser und Gewässer

Bei km 12,975 wird die Betriebsstation Nord, inclusive Notausgang 8 (BW-Nr. 12.13) des Tunnels Pegnitz als 5,95 m tiefer Schacht errichtet. Im Zuge der Baumaßnahmen erfolgt ein bauzeitlicher Eingriff in das obere Grundwasservorkommen der quartären Ablagerungen und des Blasensandsteines.

Das Schachtbauwerk wird in offener Bauweise erstellt, wobei größere Grundwasserabsenkungen außerhalb der Baugrube durch entsprechende Bauverfahren (dichte Spundwände) verhindert bzw. minimiert werden. Das Bauwerk wird druckwasserdicht ausgebildet, so daß nach Fertigstellung des Bauwerkes keine Grundwasserhaltung notwendig wird.

Entwässerung und Vorfluter

Im Endzustand erfolgt keine Entwässerung.

Das bauzeitlich in der Baugrube anfallende Grundwasser wird in den Bucher Landgraben eingeleitet.
18. BW-Nr. 13.1 (km 13,000 bis 13,375)
Nördl.Rampentrog Tunnel Pegnitz

Grundwasser und Gewässer

Entwässerung und Vorfluter

Das im Rampentrog anfallende Oberflächenwasser, ca. 94 l/s, wird in einem Speicherbecken der Betriebsstation Nord gesammelt, über Pumpen gehoben und über den Bahnseitengraben (BW-Nr. 13.3) gedrosselt dem Bucher Landgraben zugeführt.

Das in der Baugrube für den nördlichen Rampentrog anfallende Rest-, Lenz- und Niederschlagswasser wird gehoben und in den Bucher Landgraben eingeleitet.
19. BW-Nr. 13.3 (km 12,990 bis 13,500)
Bahnentwässerung

Grundwasser und Gewässer

Durch den neu, östlich der Bahn anzulegenden Bahnseitengraben, zwischen km 12,990 - 13,461 erfolgt kein direkter Eingriff in das Grundwasser, da die Sohle des (dichten) Grabens über dem höchsten Grundwasserstand liegt.

Entwässerung und Vorfluter

20. BW-Nr. 13.5 (km 13,220)
SBR Kronacher Weg

Grundwasser und Gewässer

In km 13,220 wird die einfeldrige Straßenüberführung Kronacher Weg (BW-Nr. 13.5) über die Güterzugstrecke errichtet. Die Rahmensohle ist Teil des nördlichen Rampentrog (BW-Nr. 13.1). Die Auswirkungen auf das Grundwasser sind bereits unter Punkt 18 beschrieben.

Entwässerung und Vorfluter

Das aus der Bauwerksentwässerung anfallende Wasser, ca. 7 l/s, wird über den Bahngraben (BW-Nr. 13.3) in den Bucher Landgraben geleitet.
21. BW-Nr. 13.7 (km 13,210 bis 13,500)
Abkommensschutzwall

Grundwasser und Gewässer

Zwischen km 13,210 und 13,500 wird ein Abkommensschutzwall (BW-Nr. 13.7) errichtet. Der Wallkörper wird auf den quartären Ablagerungen aufgeschüttet. Der Flurabstand des oberen Grundwasservorkommens beträgt bei MGW-Verhältnissen ca. 1,5 bis 2,0 m, bei HGW-Verhältnissen steht das Grundwasser bis dicht unter GOK an.

Im Zuge von ggf. erforderlichen Bodenaustauschmaßnahmen kann ein kurzfristiger Eingriff in das obere Grundwasservorkommen notwendig werden.

Entwässerung und Vorfluter

Das anfallende Oberflächenwasser wird jeweils über die BAB- bzw. ABS-Entwässerungsanlage abgeleitet. Südlich des Bucher Landgrabens dient dieser als Vorflut, nördlich davon der Bisloher Landgraben bzw. ein ABS-Sickerbecken. Letzteres wird im folgenden Planfeststellungsabschnitt 1.6 wasserrechtlich behandelt.

22. BW-Nr. 13.8 (km 13,375 bis 13,500)
Bahndamm

Grundwasser und Gewässer

Zwischen km 13,375 und 13,500 wird ein bis zu 2 m hoher Bahndamm neu errichtet. Nur im Zuge von ggf. erforderlichen Bodenaustauschmaßnahmen kann ein kurzfristiger Eingriff in das obere Grundwasservorkommen notwendig werden.
Entwässerung und Vorfluter
Die vom Wallkörper S' des Bucher Landgrabens anfallenden Oberflächenwässer werden über den Rückhaltegraben (BW-Nr. 13.3) in den Bucher Landgraben geleitet. Nördlich entwässert der Bahnkörper großflächig über die Böschung bzw. in ein Sickerbecken (siehe nächsten Planfeststellungsabschnitt 1.6).

23. BW-Nr. 13.9 (km 13,461)
EBR Bucher Landgraben

Grundwasser und Gewässer

Entwässerung und Vorfluter

Die Bauwerksentwässerung wird an den Bucher Landgraben angeschlossen. Die Einleitung beträgt ca. 2 l/s.
24. Verlegen von Ver- und Entsorgungsleitungen

Grundwasser und Gewässer

Im Zuge der Maßnahmen zur Verlegung von Ver- und Entsorgungsleitungen (BW-Nr. 5.4a, BW-Nr. 5.4b, BW-Nr. 5.21a bis 5.21f, BW-Nr. 6.4, BW-Nr. 6.6, BW-Nr. 7.1, BW-Nr. 7.2, BW-Nr. 7.4a bis 7.4h, BW-Nr. 7.7, BW-Nr. 9.2, BW-Nr. 11.2, BW-Nr. 12.4a bis 12.4c, BW.-Nr. 12.9a bis 12.9c, BW-Nr. 12.10 und BW-Nr. 13.6a bis 13.6c) können bauzeitlich Eingriffe in das obere Grundwasservorkommen erfolgen, wobei es sich im wesentlichen um kurzfristige, bauzeitliche Grundwasserabsenkungen handelt. Nach Beendigung der entsprechenden Maßnahmen ergeben sich keine wasserrechtlichen Tatbestände. Bei Notwendigkeit wird durch Querabschottungen im Bereich der Leitungstrassen eine Umleitung von Grundwasser verhindert.

Entwässerung und Vorfluter

Es ergibt sich kein wasserrechtlicher Tatbestand.