

Neudorf-Endsee

T 025

Abschnitt: Mast 337N - 338N

Planung Profilplan

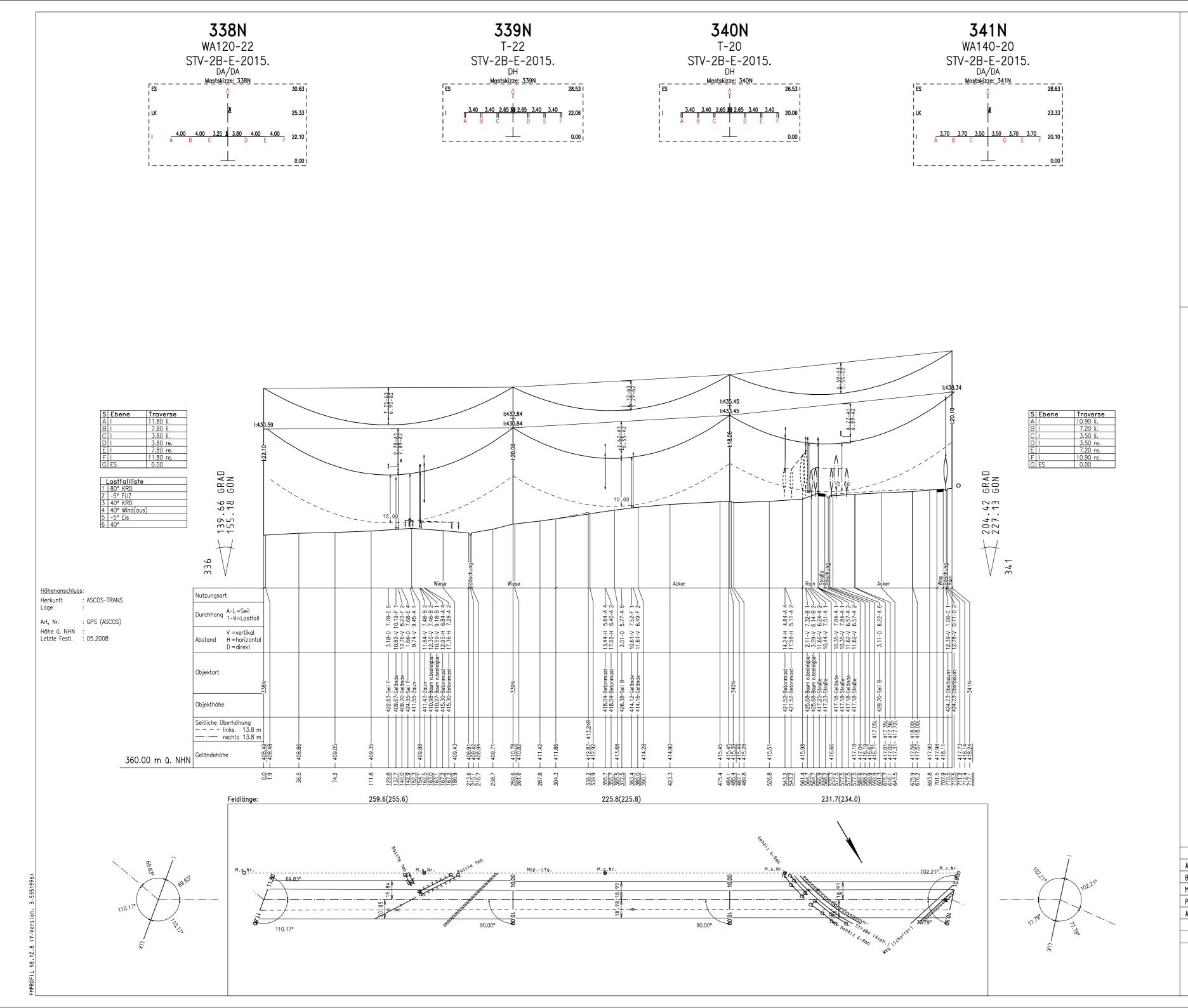
Maßstab der Längen 1:2500 Maßstab der Höhen 1:500

von Mast 337N bis Mast 338N

SEIL	ART	BUNDEL	SEILTYP / QUERSCHNITT	AUSL.TEMP.	S _M (N/mm²)	S _G (N/mm²)	STATUS
Α	110	2H	AL/ST 265/35	80° KRD	43.00	90.07	Soll 25
В	110	2H	AL/ST 265/35	80° KRD	43.00	90.29	Soll 25
C	110	2H	AL/ST 265/35	80° KRD	43.00	90.50	Soll 25
D	110	2H	AL/ST 265/35	80° KRD	43.00	90.90	Soll 25
E	110	2H	AL/ST 265/35	80° KRD	43.00	91.11	Soll 25
F	110	2H	AL/ST 265/35	80° KRD	43.00	91.31	Soll 25
G	ES	1	AL/ST 95/55	40° KRD	61.00	140.94	Soll 25

 S_{M} = Mittelzugspannung; S_{G} = Höchstgrenzzugspannung Masttypen: STV-2B-E-2015.

Berechnungsverfahren Ket, Norm VDE 9/19 HSP, g=10.00 m/s²


1 fache Windlast Zone 1 (50J-Zug/3J-Aus), 2 fache Eislast (Zone 2)

Änderungen	Firma/Bearbeiter	Datum
Berechnungsart auf KRD umgestellt	OHS/PA	06.12.23
Anpassung der Traversenausladung gemäß Mast 376	OHS/PA	05.02.24
Plankopf und Dateiname geändert	OHS/PA	04.04.24
Anpassung Schutzstreifen	OHS/Sch	04.07.24

OMEXOM

Omexom Hochspannung GmbH
Technikzentrum, Büro Worms

Inhalf:Pl	anung		
Gezeich.:	15.05.23	OHS/Sch	T025_337N-338N.pro
Gepraft:	15.05.23		
Ausgabe:	25.07.24		Blatt 1/8

Neudorf-Endsee

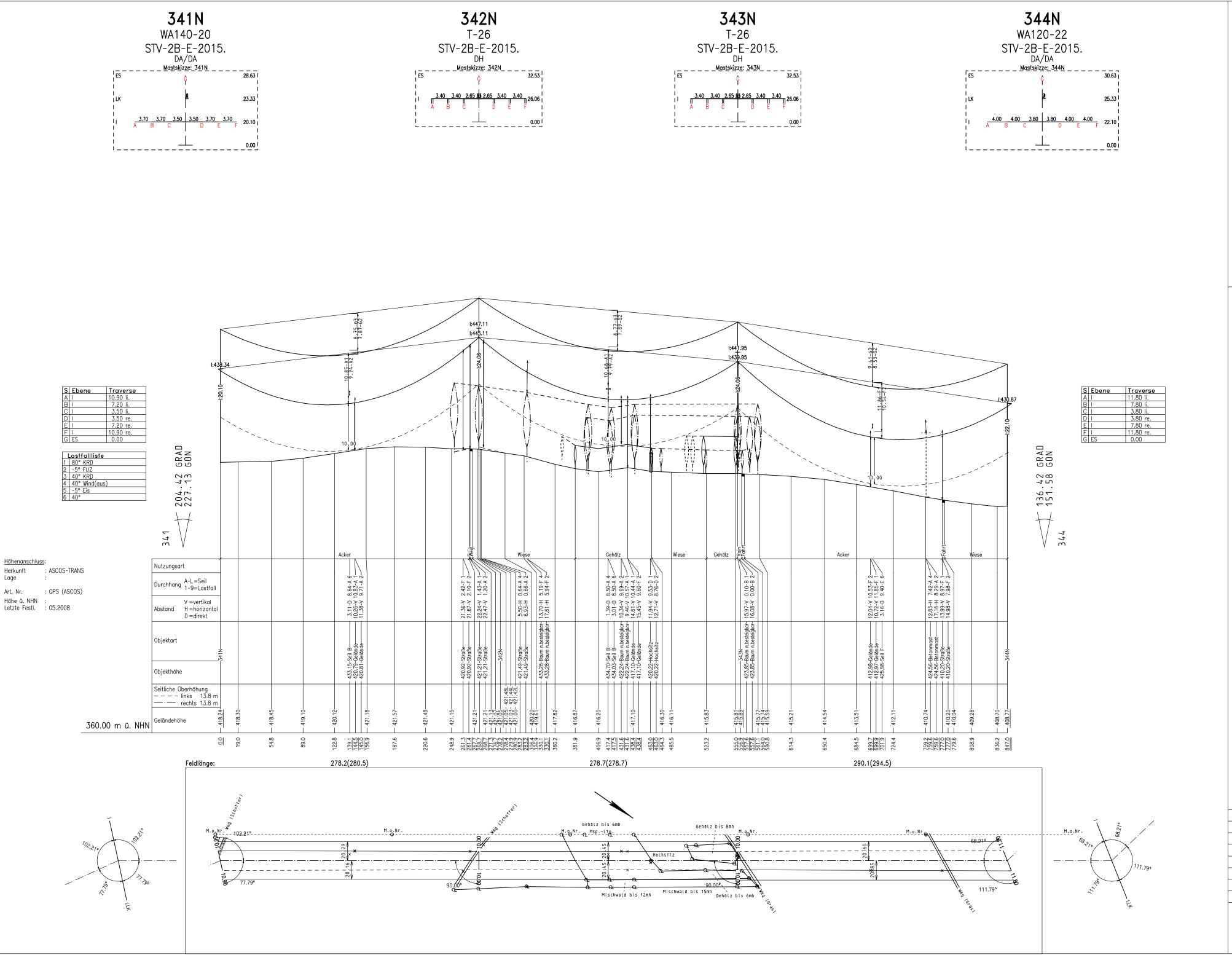
T 0 2 5

Abschnitt: Mast 338N - 341N

Planung Profilplan

Maßstab der Längen 1:2500 Maßstab der Höhen 1:500

von Mast 338N bis Mast 341N


			VOIT WAS COOK DIS WAS		113			
EIL	ART	BUNDEL	SEILTYP / QUERSCHNITT	AUSL.	TEMP.	S _M (N/mm²)	$S_{G}(N/mm^{2})$	STATUS
A	110	2H	AL/ST 265/35	80°	KRD	43.00	93.56	Soll 25
В	110	2H	AL/ST 265/35	80°	KRD	43.00	93.58	Soll 25
0	110	2H	AL/ST 265/35	80°	KRD	43.00	93.61	Soll 25
D	110	2H	AL/ST 265/35	80°	KRD	43.00	93.66	Soll 25
E	110	2H	AL/ST 265/35	80°	KRD	43.00	93.69	Soll 25
F	110	2H	AL/ST 265/35	80°	KRD	43.00	93.72	Soll 25
G	ES	1	AL/ST 95/55	40°	KRD	61.00	148.96	Soll 25

S_M= Mittelzugspannung; S_G= Höchstgrenzzugspannung Masttypen:STV-2B-E-2015. Berechnungsverfahren Ket, Norm VDE 1/11 HSP, g=10.00 m/s² 1 fache Windlast Zone 1 (50J-Zug/3J-Aus), 2 fache Eislast (Zone 2)

Änderungen	Firma/Bearbeiter	Datum
Anpassung M338N zu Abspannmast	OHS/Sch	25.07.23
Berechnungsart auf KRD umgestellt	OHS/PA	06.12.23
Masterhöhung 339N	OHS/PA	07.12.23
Plankopf und Dateiname geändert	OHS/PA	04.04.24
Anpassung Schutzstreifen	OHS/Sch	04.07.24

OMEXOM
Omexom Hochspannung GmbH

Inhalt:Pl	anung		
Gezeich.:	11.07.22	OHS/KW	T025_338N-341N.pro
Gepräft:	18.07.22		
Ausnahe:	25 07 24		Blatt 2

Neudorf-Endsee

T 025

Abschnitt: Mast 341N - 344N

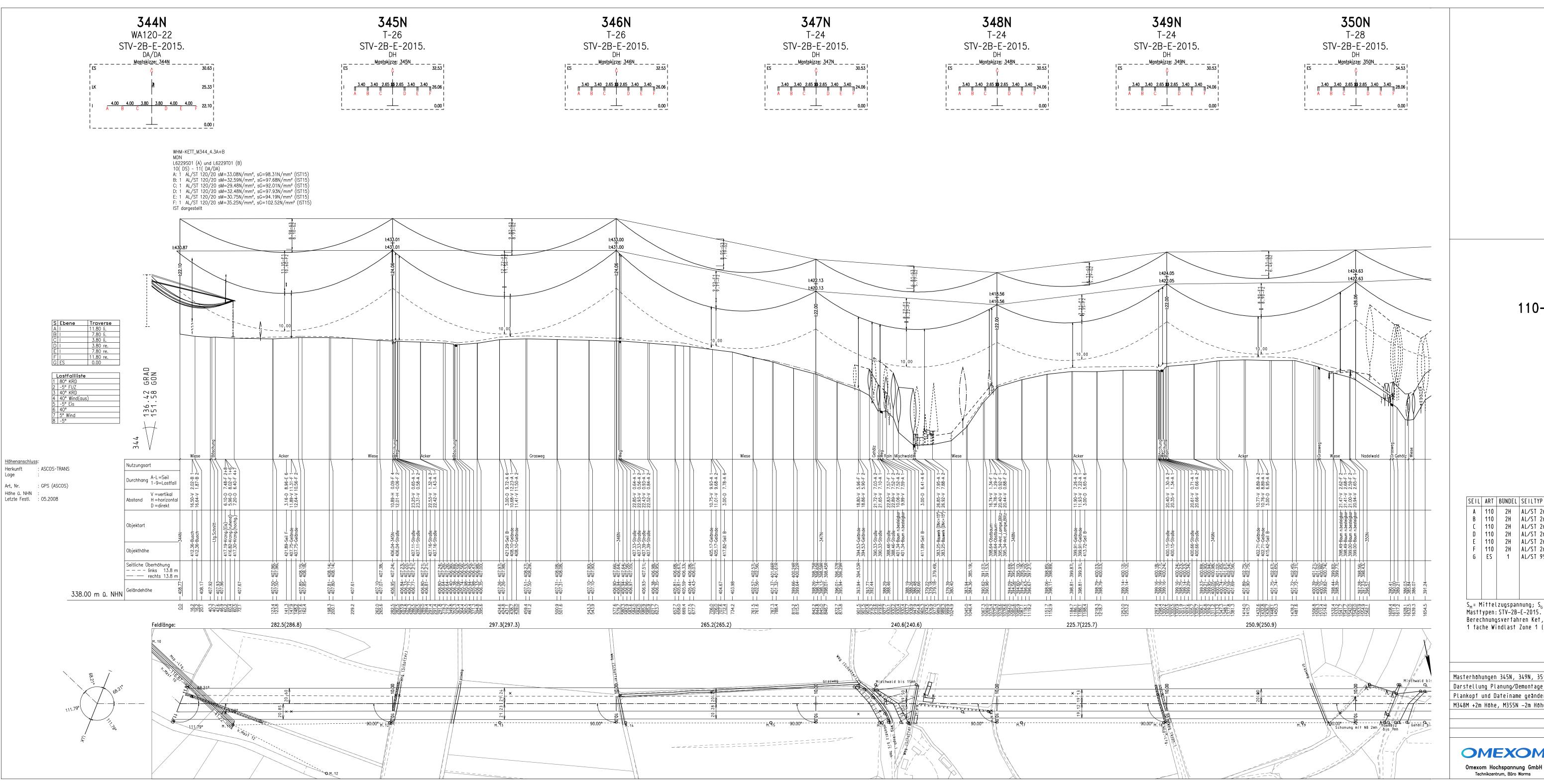
Planung Profilplan

Maßstab der Längen 1:2500 Maßstab der Höhen 1:500

von Mast 341N bis Mast 344N

EIL	ART	BUNDEL	SEILTYP / QUERSCHNITT	AUSL.TEMP.	S _M (N/mm²)	S _G (N/mm²)	STATUS
A B C D E F	110 110 110 110 110 110 110 ES	2H 2H 2H 2H 2H 2H 2H 1	AL/ST 265/35 AL/ST 265/35 AL/ST 265/35 AL/ST 265/35 AL/ST 265/35 AL/ST 265/35 AL/ST 95/55	80° KRD 80° KRD 80° KRD 80° KRD 80° KRD 40° KRD	43.00 43.00 43.00 43.00 43.00 43.00 61.00	95.76 95.78 95.81 95.85 95.87 95.90	Soll 25 Soll 25 Soll 25 Soll 25 Soll 25 Soll 25 Soll 25

S_M= Mittelzugspannung; S₆= Höchstgrenzzugspannung Masttypen: STV-2B-E-2015.


Berechnungsverfahren Ket, Norm VDE 1/11 HSP, g=10.00 m/s² 1 fache Windlast Zone 1 (50J-Zug/3J-Aus), 2 fache Eislast (Zone 2)

Änderungen	Firma/Bearbeiter	Datum
ordianten Transformiert von GK4 zu UTM32	OHS/KW	11.07.22
echnungsart auf KRD umgestellt	OHS/PA	06.12.23
stellung Planung/Demontage entfernt	OHS/PA	13.03.24
nkopf und Dateiname geändert	OHS/PA	04.04.24
passung Schutzstreifen	OHS/Sch	04.07.24

OMEXOM
Omexom Hochspannung GmbH

Technikzentrum, Büro Worms

Inhalt:Pl	anung			
Gezeich.:	11.07.22	OHS/KW	T	025_341-344.pro
Gepraft:	18.07.22	OHS/Sch		
Ausgabe:	25.07.24			Blatt 3/8

Neudorf-Endsee

T 025

Abschnitt: Mast 344N- 356N

Planung Profilplan

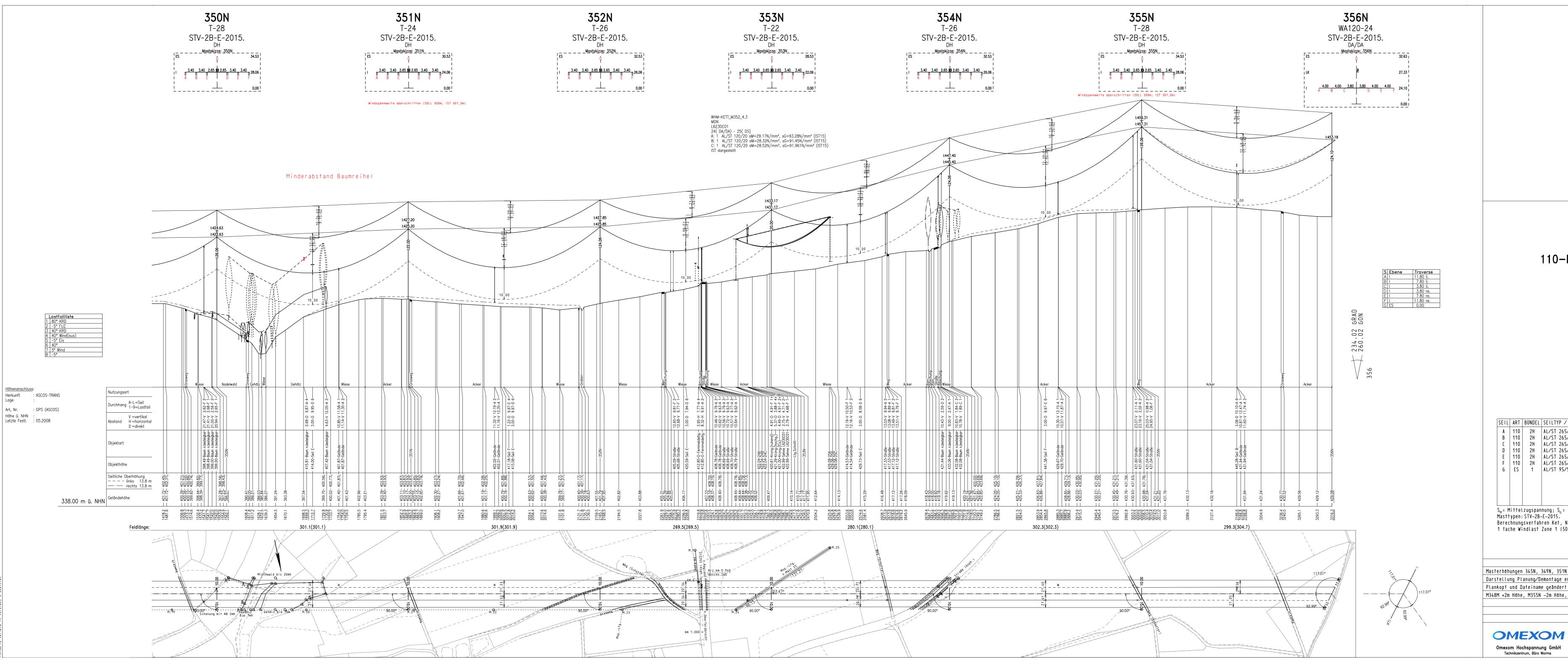
Maßstab der Längen 1:2500 Maßstab der Höhen 1: 500

von Mast 344N bis Mast 356N

ART	BUNDEL	SEILTYP / QUERSCHNITT	AUSL.TE	EMP.	S _M (N/mm²)	$S_G(N/mm^2)$	STATUS
110	2H	AL/ST 265/35	80° K	(RD	43.00	96.36	Soll 25
110	2H	AL/ST 265/35	80° K	:RD	43.00	96.32	Soll 25
110	2H	AL/ST 265/35	80° K	:RD	43.00	96.29	Soll 25
110	2H	AL/ST 265/35	80° K	RD	43.00	96.23	Soll 25
110	2H	AL/ST 265/35	80° K	(RD	43.00	96.20	Soll 25
110	2H	AL/ST 265/35	80° K	:RD	43.00	96.16	Soll 25
ES	1	AL/ST 95/55	40° K	(RD	61.00	153.28	Soll 25
	110 110 110 110 110 110	110 2H 110 2H 110 2H 110 2H 110 2H 110 2H	110 2H	110 2H AL/ST 265/35 80° K 110 2H AL/ST 265/35 80° K	110 2H AL/ST 265/35 80° KRD 110 2H AL/ST 265/35 80° KRD	110 2H AL/ST 265/35 80° KRD 43.00 110 2H AL/ST 265/35 80° KRD 43.00	110 2H AL/ST 265/35 80° KRD 43.00 96.36 110 2H AL/ST 265/35 80° KRD 43.00 96.32 110 2H AL/ST 265/35 80° KRD 43.00 96.29 110 2H AL/ST 265/35 80° KRD 43.00 96.23 110 2H AL/ST 265/35 80° KRD 43.00 96.20 110 2H AL/ST 265/35 80° KRD 43.00 96.16

S_M = Mittelzugspannung; S_G = Höchstgrenzzugspannung

Berechnungsverfahren Ket, Norm VDE 1/11 HSP, g=10.00 m/s² 1 fache Windlast Zone 1 (50J-Zug/3J-Aus), 2 fache Eislast (Zone 2)


Änderungen	Firma/Bearbeiter	Datum
rhöhungen 345N, 349N, 351N	OHS/PA	07.12.23
ellung Planung/Demontage entfernt	OHS/PA	13.03.24
opf und Dateiname geändert	OHS/PA	04.04.24
1 +2m Höhe, M355N —2m Höhe, M356N +2m wg. Gew.spw.	OHS/PA	11.04.24

OMEXOM Omexom Hochspannung GmbH

Inhalt: Planung Gezeich.: 11.07.22 | DHS/KW ____ T025_344-356.pro Gepraft: 18.07.22 OHS/Sch Ausgabe: 25.07.24

Blatt 4A/8

Anlage 03-3

Neudorf-Endsee

T 025

Abschnitt: Mast 344N- 356N

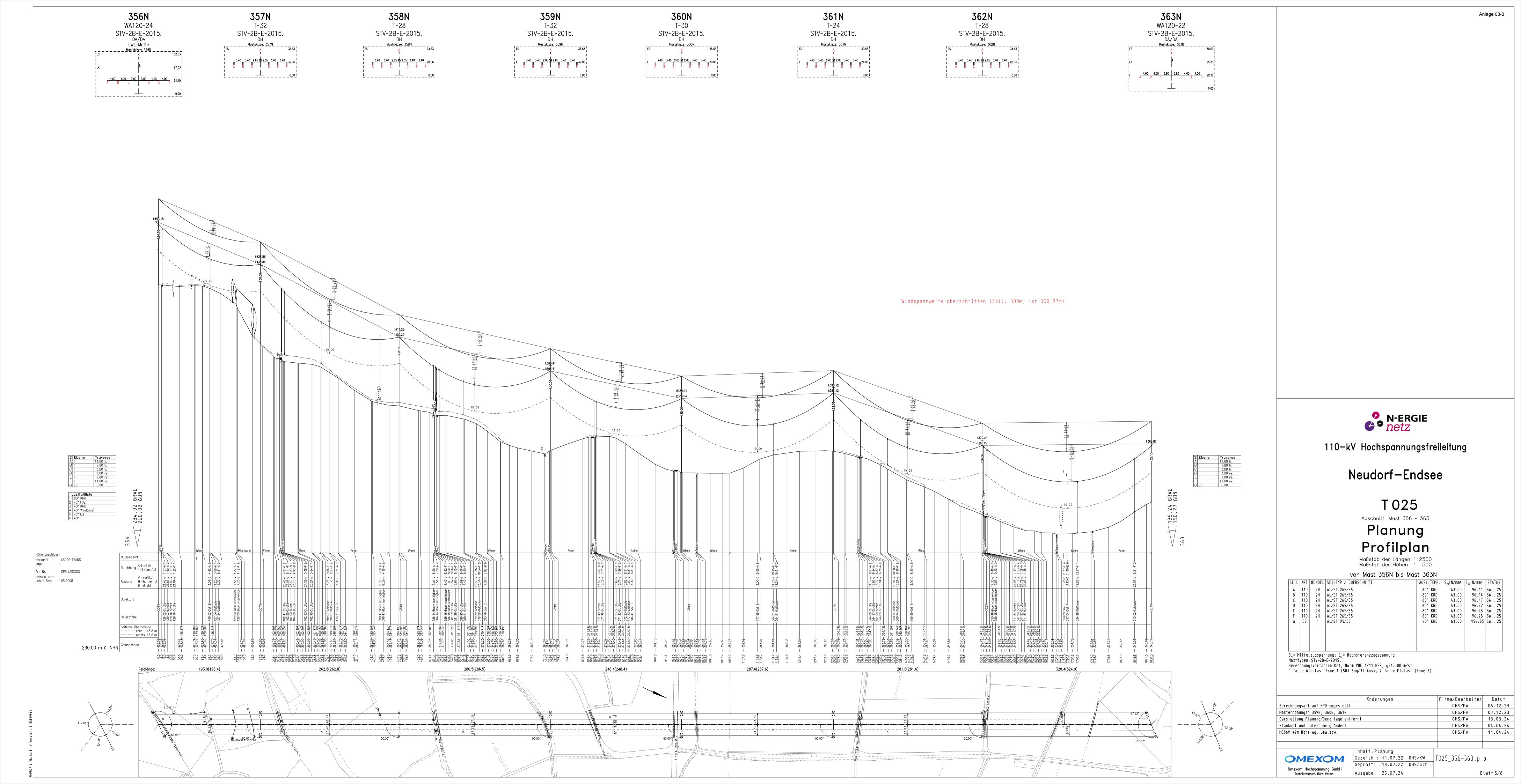
Planung Profilplan

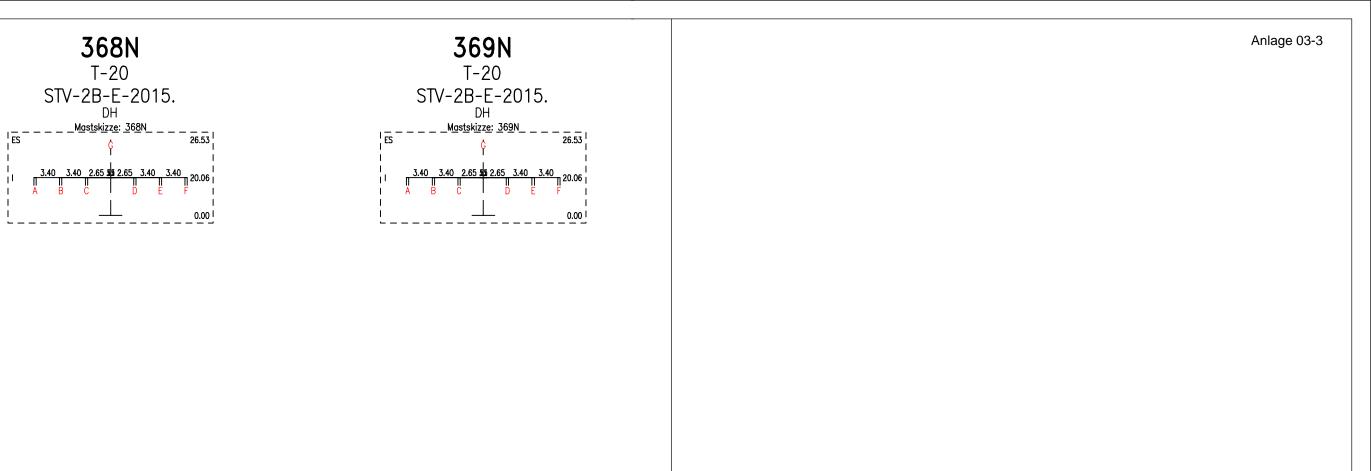
Maßstab der Längen 1:2500 Maßstab der Höhen 1: 500

von Mast 344N bis Mast 356N

L	ART	BUNDEL	SEILTYP / QUERSCHNITT	AUSL.TEMP.	S _M (N/mm²)	S _G (N/mm²)	STATUS
	110	2H	AL/ST 265/35	80° KRD	43.00	96.36	Soll 25
	110	2H	AL/ST 265/35	80° KRD	43.00	96.32	Soll 25
	110	2H	AL/ST 265/35	80° KRD	43.00	96.29	Soll 25
	110	2H	AL/ST 265/35	80° KRD	43.00	96.23	Soll 25
	110	2H	AL/ST 265/35	80° KRD	43.00	96.20	Soll 25
	110	2H	AL/ST 265/35	80° KRD	43.00	96.16	Soll 25
	ES	1	AL/ST 95/55	40° KRD	61.00	153.28	Soll 25

 S_{M} = Mittelzugspannung; S_{G} = Höchstgrenzzugspannung


Berechnungsverfahren Ket, Norm VDE 1/11 HSP, g=10.00 m/s² 1 fache Windlast Zone 1 (50J-Zug/3J-Aus), 2 fache Eislast (Zone 2)


Änderungen	Firma/Bearbeiter	Datum
ohungen 345N, 349N, 351N	OHS/PA	07.12.23
lung Planung/Demontage entfernt	OHS/PA	13.03.24
f und Dateiname geändert	OHS/PA	04.04.24
2m Höhe, M355N —2m Höhe, M356N +2m wg. Gew.spw.	OHS/PA	11.04.24

Inhalt:Pl	anung		
Gezeich.:	11.07.22	OHS/KW	T025_344-356.p
Gepraft:	18.07.22		<u> </u>
Ausgabe:	25.07.24		

Blatt 4B/8

Anlage 03-3

366N

T-22

STV-2B-E-2015.

3.40 3.40 2.65 55 2.65 3.40 3.40 22.06 A B C D E F

367N

T-24

STV-2B-E-2015.

3.40 3.40 2.65 **45** 2.65 3.40 3.40 1 24.06 A B C D E F

364N

T-30

STV-2B-E-2015.

1== ____<u>Mastskizze: 364N_____</u> 36.53 |

3.40 3.40 2.65 **55** 2.65 3.40 3.40 1 30.06 1 A B C D E F

WA120-22

STV-2B-E-2015.

Mastskizze: 363N ______

365N

T-22

STV-2B-E-2015.

3.40 3.40 2.65 **\$5** 2.65 3.40 3.40 1 22.06 A B C B F

110-kV Hochspannungsfreileitung

Neudorf-Endsee

T 025

Abschnitt: Mast 363N - 376N

Planung Profilplan

Maßstab der Längen 1:2500 Maßstab der Höhen 1:500

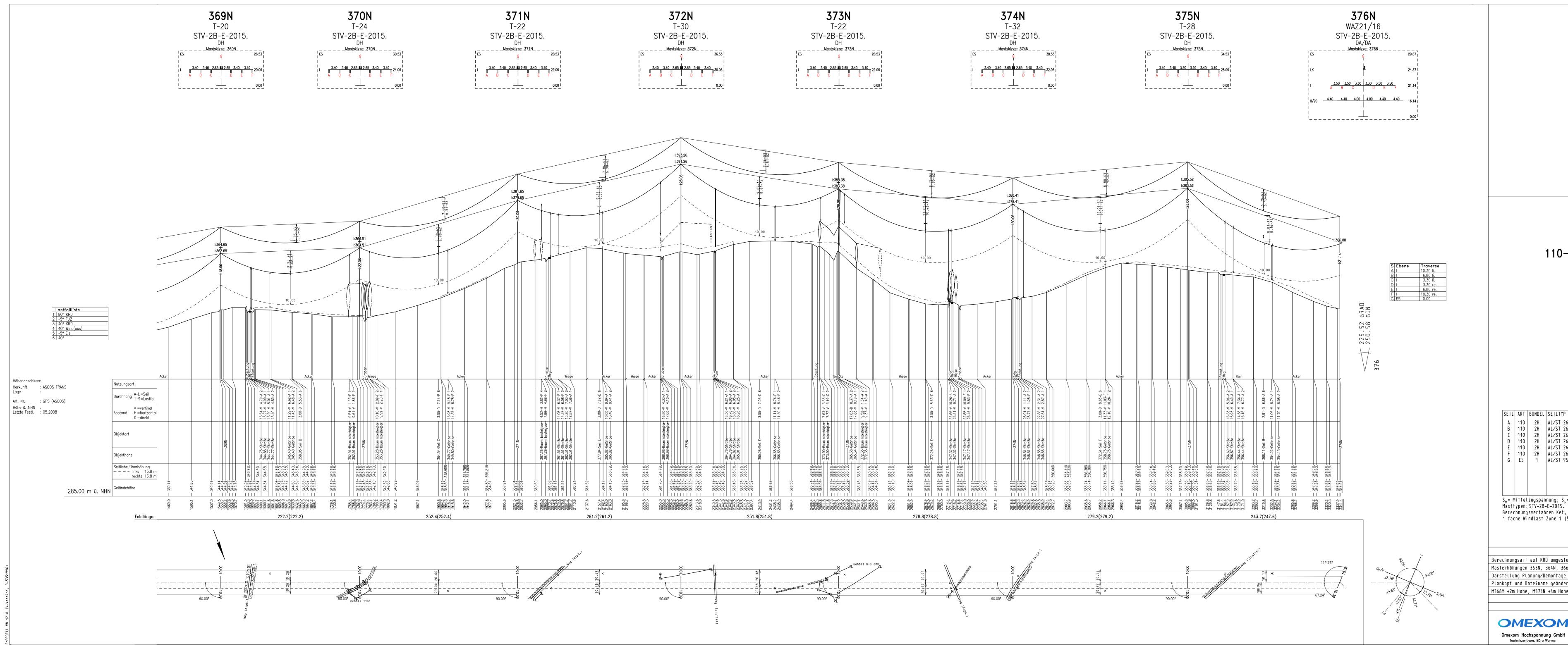
Mast 767N his Mast 776N

			von Mast 363N bis Mas	t 37	6N			
SEIL	ART	BUNDEL	SEILTYP / QUERSCHNITT	AUSL.	TEMP.	S _M (N/mm²)	$S_G(N/mm^2)$	STATUS
A	110	2H	AL/ST 265/35	80°	KRD	43.00	94.90	Soll 25
В	110	2H	AL/ST 265/35	80°	KRD	43.00	94.89	Soll 25
C	110	2H	AL/ST 265/35	80°	KRD	43.00	94.87	Soll 25
D	110	2H	AL/ST 265/35	80°	KRD	43.00	94.92	Soll 25
Ε	110	2H	AL/ST 265/35	80°	KRD	43.00	94.96	Soll 25
F	110	2H	AL/ST 265/35	80°	KRD	43.00	94.99	Soll 25
G	ES	1	AL/ST 95/55	40°	KRD	61.00	152.38	Soll 25

S_M= Mittelzugspannung; S_G= Höchstgrenzzugspannung

Masttypen: STV-2B-E-2015.

Berechnungsverfahren Ket, Norm VDE 9/19 HSP, g=10.00 m/s²


1 fache Windlast	Zone 1	(50J-Zug/3J-Aus),	2 fache	Eislast	(Zone 2)

Änderungen	Firma/Bearbeiter	Datum
hnungsart auf KRD umgestellt	OHS/PA	06.12.23
rhöhungen 363N, 364N, 366N,369N, 372N, 375N	OHS/PA	07.12.23
ellung Planung/Demontage entfernt	OHS/PA	13.03.24
opf und Dateiname geändert	OHS/PA	04.04.24
+2m Höhe, M374N +4m Höhe, M375N —2m Höhe wg. Gew.spw.	OHS/PA	11.04.24

	' '
OMEXOM	G
	G
Omexom Hochspannung GmbH Technikzentrum, Büro Worms	A

Inhalt:Pla	anung				
Gezeich.:	11.07.22	OHS/KW	T	025_363-376.pr	0
Gepraft:	18.07.22			_ ,	
Ausgabe:	25.07.24			В	l a 1

Blatt6A/8

Anlage 03-3

Neudorf-Endsee

T 025

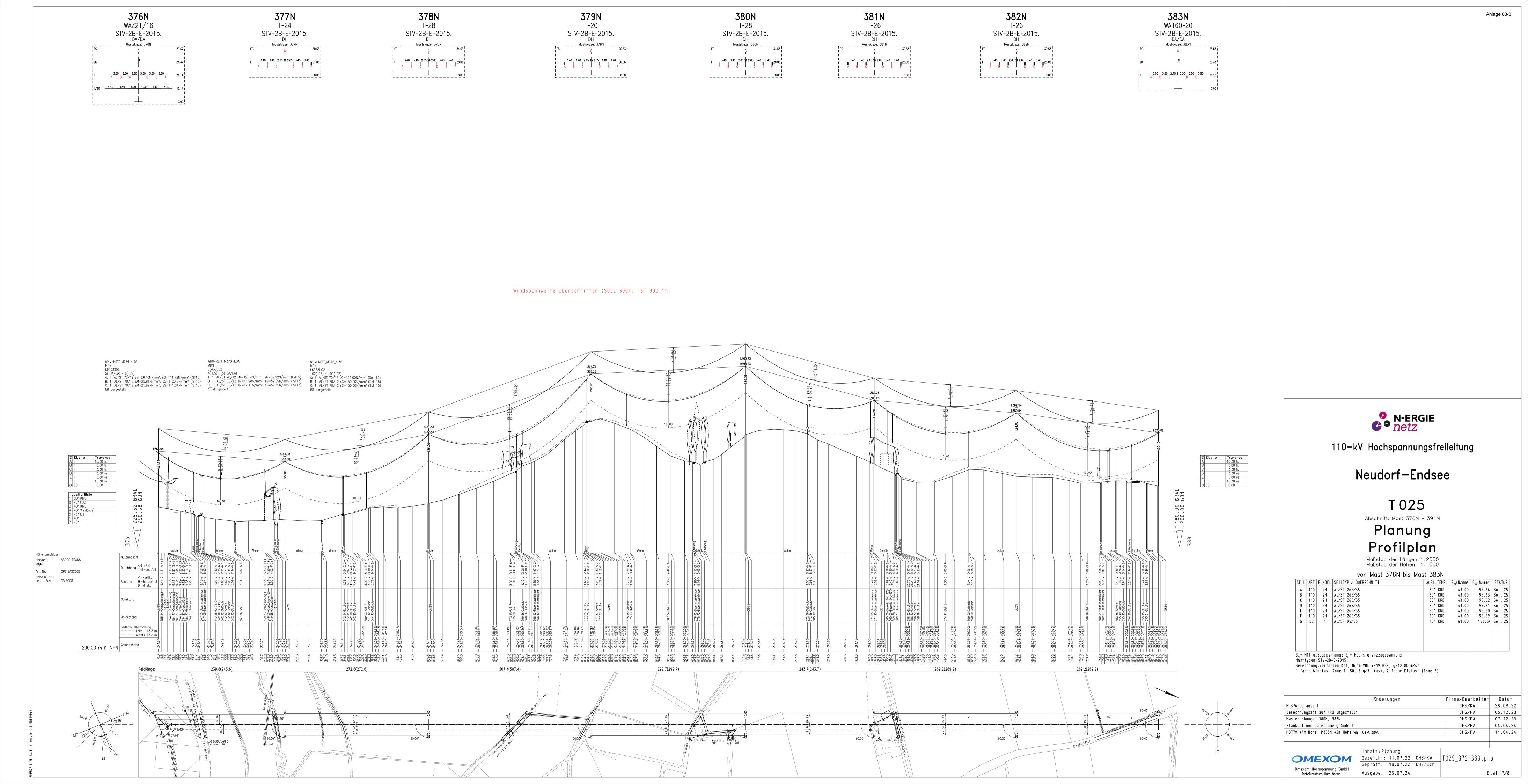
Abschnitt: Mast 363N - 376N

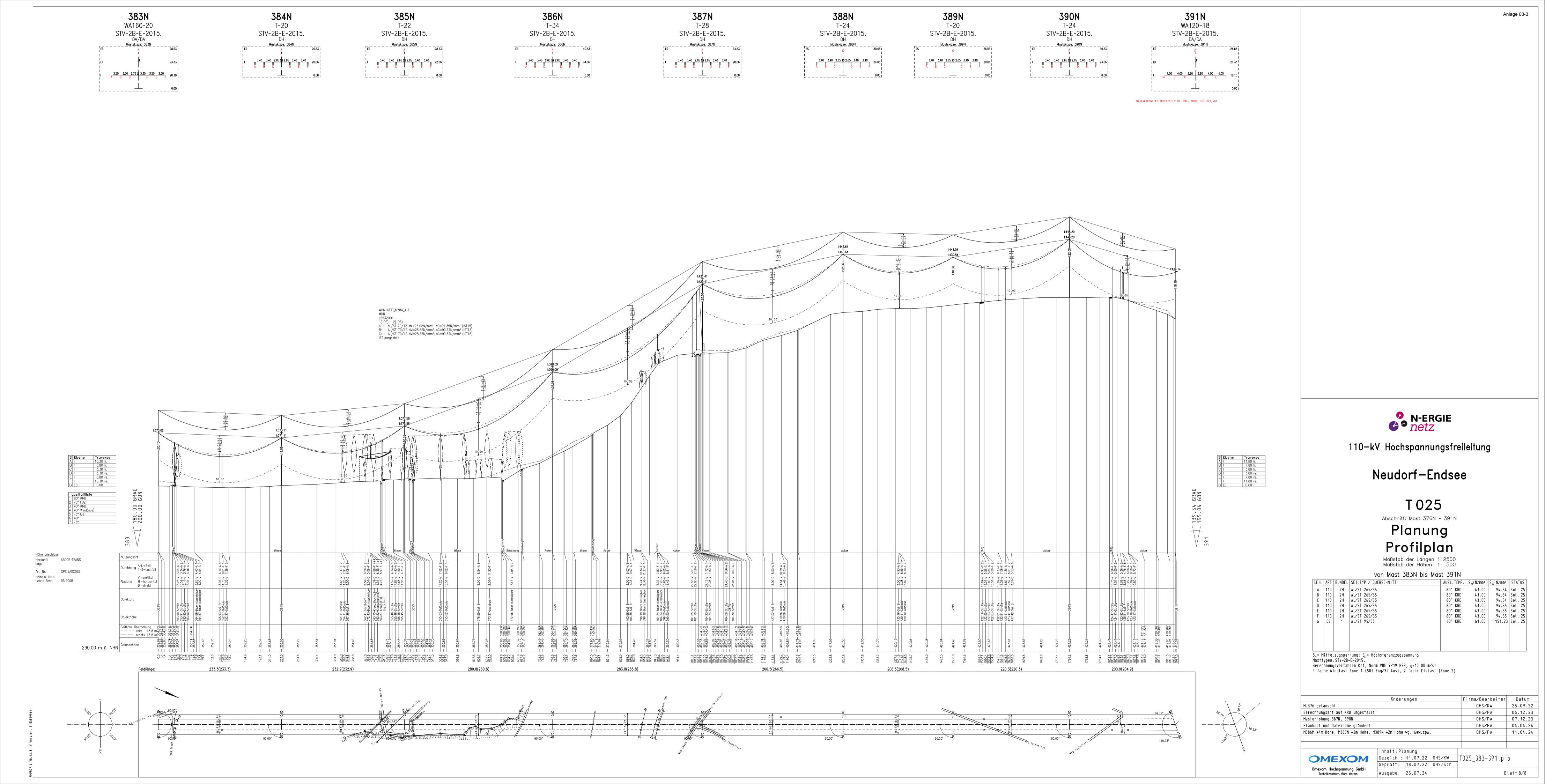
Planung Profilplan

Maßstab der Längen 1:2500 Maßstab der Höhen 1: 500

von Mast 363N bis Mast 376N

-	ART	BUNDEL	SEILTYP / QUERSCHNITT	AUSL.TEMP.	S _M (N/mm²)	$S_G(N/mm^2)$	STATUS
	110 110 110 110 110 110 ES	2H 2H 2H 2H 2H 2H 1	AL/ST 265/35 AL/ST 265/35 AL/ST 265/35 AL/ST 265/35 AL/ST 265/35 AL/ST 95/55	80° KRD 80° KRD 80° KRD 80° KRD 80° KRD 40° KRD	43.00 43.00 43.00 43.00 43.00 43.00 61.00	94.90 94.89 94.87 94.92 94.96 94.99 152.38	Soll 25 Soll 25 Soll 25 Soll 25 Soll 25 Soll 25 Soll 25


S_M= Mittelzugspannung; S_G= Höchstgrenzzugspannung


Berechnungsverfahren Ket, Norm VDE 9/19 HSP, g=10.00 m/s² 1 fache Windlast Zone 1 (50J-Zug/3J-Aus), 2 fache Eislast (Zone 2)

Änderungen	Firma/Bearbeiter	Datum
ungsart auf KRD umgestellt	OHS/PA	06.12.23
bhungen 363N, 364N, 366N,369N, 372N, 375N	OHS/PA	07.12.23
lung Planung/Demontage entfernt	OHS/PA	13.03.24
f und Dateiname geändert	OHS/PA	04.04.24
2m Höhe, M374N +4m Höhe, M375N —2m Höhe wg. Gew.spw.	OHS/PA	11.04.24

OMEXOM | Gezeich.: | 11.07.22 | DHS/KW | T025_363-376.pro Gepraft: 18.07.22 OHS/Sch

Blatt6B/8

