Raitersaich - Ludersheim - Sittling - Altheim 380-kV-Ersatzneubauprojekt

Juraleitung

Ltg.-Abschnitt West Raitersaich_West - Ludersheim_West LH-07-B170

Planfeststellungsunterlage

Materialband 04.1

Baugrundvoruntersuchung

Antragsteller:

TenneT TSO GmbH

Bernecker Straße 70 95448 Bayreuth Bearbeitung:

BERNARD Gruppe ZT GmbH

Bahnhofstraße 19 Hall in Tirol

	T				
Aufgestellt:	TenneT TSO GmbH	Bayreuth, den			
	i.V. gez.: Julia Gotzler	25.03.2025			
	i.V. gez.: Andreas Junginger				
Bearbeitung:	BERNARD Gruppe ZT GmbH				
	i.A. gez.: Wieser B.				
	i.A. gez.: Willegger C.				
	i.A. gez.: Steffanowksi J.				
	-				
Anlagen zum	Anlage 1: Planunterlagen				
Dokument:	Anlage 1.1: Übersichtslageplan				
	Anlage 1.2: Digitales Geländemodell, Topogr	aphie, Maßstab 1 : 60.000			
	Anlage 1.3: Lage der Bohrungen, Maßstab 1	: 30.000			
	Anlage 1.4: Überflutungsflächen, Maßstab 1	: 30.000			
	Anlage 1.5: Geologische Karte, Maßstab 1 : 3	30.000			
	Anlage 1.6: Bodendenkmäler, Altlasten, Maßstab 1 : 30.000				
	Anlage 1.7: Georisiken, Maßstab 1 : 30.000				
	Anlage 1.8: Hinweiskarte hohe Grundwasserstände, Maßstab 1 : 30.000				
	Anlage 1.9: Luftbild mit Fotos, 1 : 30.000				
	Anlage 1.10: Baugrundkarte mit Klassifizieru	ung Masten nach Beeinträchti-			
	gung, Anlage Maßstab 1 : 30.000				
	Anlage 2: Fotodokumentation der Trassenbegehu	ng			
	Anlage 3: Archivbohrungen				
	Anlage 3.1: Liste der Archivbohrungen				
	Anlage 3.2: Bohrprofile Korridor 200m				
	Anlage 3.3: Bohrprofile Korridor 400m				
	Anlage 3.4: Bohrprofile Korridor 600m				
	Anlage 3.5: Bohrprofile Korridor >600m				
	Anlage 4: Klassifizierung der Masten				
Änderungs-	Änderung:	Änderungsdatum:			
historie:					

Die Baugrundvoruntersuchung wurden 2022 für den Abschnitt Raitersaich_West - Ludersheim_West (Abschnitt A) erstellt und gibt Empfehlungen für die Baugrundhauptuntersuchung ab. Im weiteren Planungsverlauf wurde der Abs. A-West gebildet. Dieser wird daher in der Baugrundvoruntersuchung von den Berichten zu Abschnitt AO abgedeckt. Die Ergebnisse der Baugrundhauptuntersuchung werden der Planfeststellungsunterlage beigefügt, sobald alle Untersuchungen abgeschlossen und ausgewertet sind.

TECHNISCHER BERICHT

Datum: 03.02.2022 Projekt-Nr.: P012547

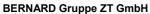
Version V1.0

Seitenanzahl:

Autor: WiBa, WiCa

26

Auftraggeber:


TenneT TSO GmbH

Projekt:

Baugrundvoruntersuchung A070

Inhalt:

Geologischer Bericht Abschnitt A

Bahnhofstraße 19 6060 Hall in Tirol T +43 5223 5840 0 • F +43 5223 5840 201 info@bernard-gruppe.com Sitz der Gesellschaft: Hall in Tirol Landesgericht Innsbruck Firmenbuch: FN260331s USt-IdNr.: ATU61623915 Geschäftsführer: Lukas Praxmarer

Bank:
Bank für Tirol und Vorarlberg
IBAN: AT58 1600 0001 0062 7493
BIC: BTVAAT22XXX
bernard-gruppe.com

Baugrundvoruntersuchung A070 Geologischer Bericht

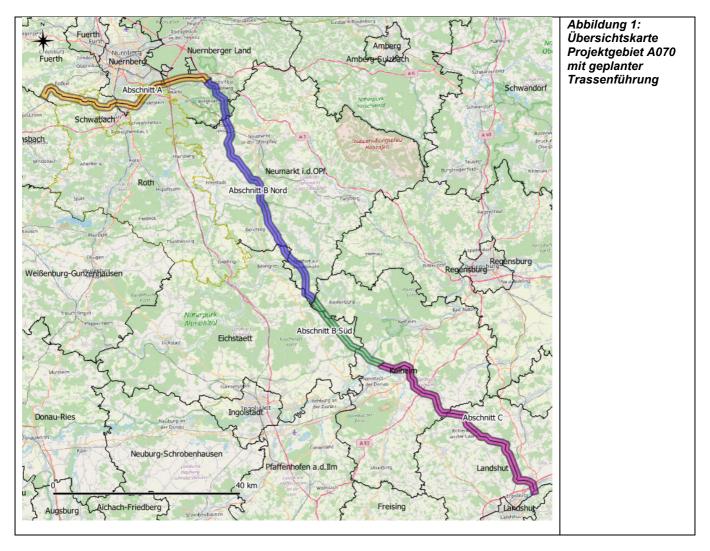
Projektnr.: P012547 Datum: 03.02.2022

Revisionen und Änderungen

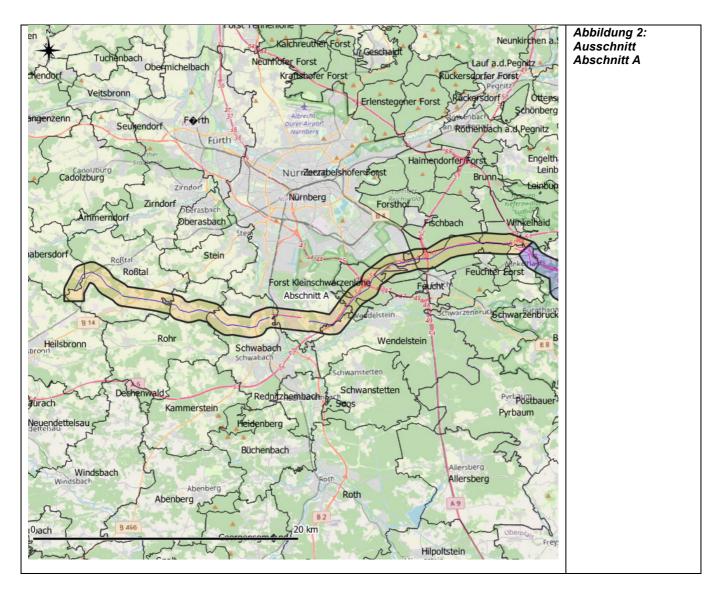
Rev.	Erstellt von	Datum	Art der Änderung
V1.0	Wieser B.,	03.02.2022	Erstausgabe
	Willegger C.,		
	Steffanowski J.		

Bernard Gruppe ZT GmbH Seite 2 von 26

INHALTSVERZEICHNIS


1.	Projektbeschreibung	4
2.	Aufgabenstellung	5
3.	Methodik	6
3.1	Vorgehensweise	6
3.2	Einschränkungen	8
4.	Grundlagen	9
5.	Geologischer Überblick	11
5.1	Schichtstufenland	12
5.2	Molasse	12
5.3	Hydrogeologie	12
5.3.1	Allgemein	12
5.3.2	Hydrogeologie Abschnitt A	13
5.3.3	Hohe Grundwasserstände in Bayern ([3])	15
3 .	Bodendenkmäler	16
7.	Altlasten	16
8.	Kampfmittel	17
9.	Georisiken	17
9.1	Überflutungsbereiche / Hochwasser	17
10.	Baugrund / Geologie	18
10.1	Topographie	18
10.2	Daten aus Umweltatlas	19
10.3	Bauwasserhaltung	20
10.4	Baugrund / Geotechnik	20
11.	Erkundungskonzept	21
11.1	Methodik	21
11.1.1	Baugrunderkundung	21
11.2	Erkundungsprogramm	24
12.	Schlussbemerkungen	25
13.	Anhang	26

1. Projektbeschreibung


Die TenneT TSO GmbH plant im Zuge des Netzausbaus einen Ersatzneubau der Höchstspannungsleitung Raiersaich – Ludersheim – Sittling – Altheim auf einer Spannungsebene von 380 kV. Hierfür wird eine Baugrundvoruntersuchung benötigt. Der zu untersuchende Trassenkorridor beträgt insgesamt ca. 170 km. Die Trasse ist in 4 Planfeststellungsabschnitte aufgeteilt, an die sich die Aufteilung der Lose orientiert.

Dieser Bericht beinhaltet den Abschnitt A (Landkreise Fürth, Schwäbach, Nürnberg und Nürnberger Land). Der Trassenabschnitt durchläuft die Ortschaften: Großhabersdorf, Roßtal, Rohr, Schwabach, Nürnberg, Wendelstein, Forst Kleinschwazenlöhe, Feucht, Feuchter Forst, Moosbach und Winkelhaid.

Bernard Gruppe ZT GmbH Seite 4 von 26

2. Aufgabenstellung

Für die weiteren Planungsschritte und das Genehmigungsverfahren soll für die Abschnitte ein Baugrundvorgutachten erstellt werden. Die Arbeiten dafür lassen sich in drei Teile aufgliedern:

- 1. Grundlagenermittlung: Datenrecherche zu baugrundrelevanten Grundlagendaten (Geologie, Grundwasser, Georisiken, ...)
- 2. Trassenbefahrung/Ortsbegehung: Geologische Kartierung der Trasse vor Ort
- 3. Vorgutachten zu den Baugrundverhältnissen: Angabe vorläufiger Bodenkennwerte sowie Empfehlungen für Baugrunduntersuchungen (Erkundungskonzept)

Baugrundaufschlüsse in Form von Bohrungen, Sondierungen oder Baggerschürfen sind in dieser Phase nicht vorgesehen.

Bernard Gruppe ZT GmbH Seite 5 von 26

3. Methodik

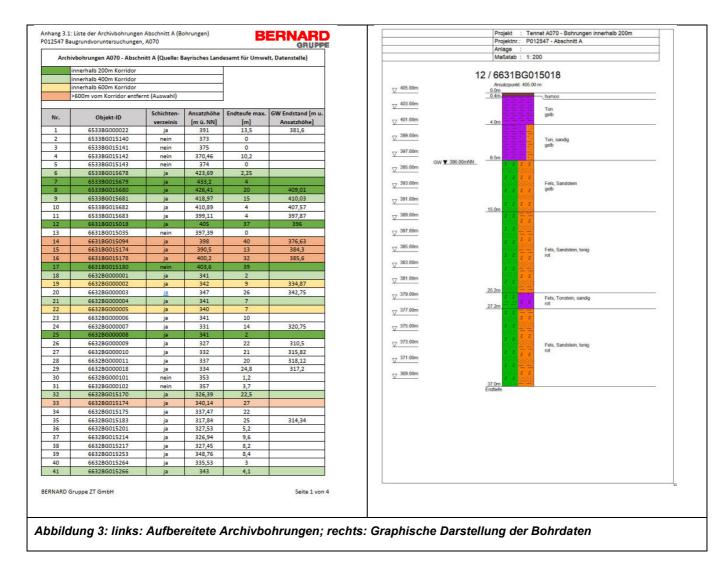
3.1 Vorgehensweise

Die Grundlage für das Baugrundgutachten bildet die Datenrecherche. Alle relevanten Daten im Bearbeitungsraum wurden erhoben und ausgewertet. Die verfügbaren Daten lassen sich in folgenden Kategorien unterteilen:

- Basisdaten: z.B. Topographische Karten, Luftbilder, Geländemodell, ...
- Geologische Daten: z.B. Geologische Karten, Erläuterungsberichte, Hydrogeologische Karten, Gefahrenkarten, Archivbohrungen, ...
- Sonstige Daten: Altlastenverdachtsflächen, Altbergbau, Bodendenkmäler, ...

Eine wichtige Datenquellen bei der Beurteilung der Untergrundverhältnisse stellen Archivbohrungen dar. Diese können in Bayern bei der Datenstelle des LFU-Bayern kostenpflichtig abgerufen werden. Für den gesamten Trassenverlauf konnten 647 Bohrungen abgerufen werden, wobei sich im gegenständlichen Abschnitt A insgesamt 144 dieser Bohrungen befinden und zusätzlich 95 Standorte für Erdwärmesonden bekannt sind. Davon sind für 109 Bohrungen und 10 Erdwärmesonden Bohrprofile (Schichtverzeichnis) vorhanden. 12 dieser Bohrungen liegen innerhalb des 200 m, 25 im 400 m breiten Korridors. Innerhalb des 600 m breiten Korridors liegen 19 Bohrungen, 6 Bohrungen liegen außerhalb des 600 m breiten Korridors Diese 6 Bohrungen wurden in Bereichen herangezogen wo keine Bohrungen in den engeren Korridoren vorhanden sind (vgl. Tabelle 1).

Tabelle 1: Archivbohrungen im Abschnitt 1


Archivbohrungen im Bearbeitungsbereich				
Gesamtzahl	647			
Bohrungen in Abschnitt A	144			
Bohrungen im Abschnitt A mit Schichtenprofil	109 (davon 10 EWS)			
Bohrungen mit Bohrprofil innerhalb 200m Korridor	7 Bohrungen, 0 EWS			
Bohrungen mit Bohrprofil innerhalb 400m Korridor	23 Bohrungen, 6 EWS			
Bohrungen mit Bohrprofil innerhalb 600m Korridor	13 Bohrungen, 1 EWS			
Bohrungen mit Bohrprofil > 600m Korridor (Auswahl)	9 Bohrungen, 3 EWS			

Die Archivbohrungen wurden als Exceldatei geliefert. Zur besseren Lesbarkeit und vereinfachten Interpretation der Daten wurden alle Bohrprofile mit der Software DC-Bohr digitalisiert und graphisch dargestellt (vgl. Abbildung 3).

Eine Liste aller Archivbohrungen sowie die digitalisierten Bohrprofile sind in Abbildung 3. ersichtlich. Die Lage der Bohrpunkte ist in den Planunterlagen (Anhang 1.3) dargestellt.

Bernard Gruppe ZT GmbH Seite 6 von 26

Die für die Erstellung des Baugrundvorgutachtens verwendeten Datenquellen sind im Kapitel 4 angeführt.

Nach der Sammlung und Auswertung der verfügbaren geologischen Informationen erfolgte im zweiten Schritt die Begehung und Kartierung der Trassen.

Bei der Kartierung wurde besonderes Augenmerk auf die folgenden Punkte gelegt:

- Geologie/Baugrund: Lockergestein/Fels, Korngrößenverteilung, Konsistenz, Lagerungsdichte
- Geländeform (Topographie, Hinweise auf Massenbewegungen, Erdfallgebiete, ...)
- Wasser: Vernässungen und Wasseraustritte (Sumpfgebiete)

Bei der Beschreibung der Geologie bzw. des Baugrundes ist man auf natürliche oder künstliche Aufschlüsse angewiesen in denen Bodenaufbau, Schichtverlauf und Zusammensetzung (Fest-, Lockergestein, Korngrößenverteilung, etc.) ersichtlich sind. Hauptinformationsquellen sind dabei natürliche Böschungen oder Weg-, Straßen- und Flussböschungen sowie Baugruben oder Kiesabbaustellen. Auch aus frisch gepflügten Äckern oder den Aufschlüssen unter entwurzelten Bäumen

Bernard Gruppe ZT GmbH Seite 7 von 26

lassen sich eingeschränkte Aussagen über den Untergrund treffen. Die Fotodokumentation der Begehung ist in Anhang 2 ersichtlich.

Um Konflikte zu vermeiden wurde bei der Begehung sowohl darauf geachtet keine Privatgrundstücke zu betreten als auch die Begehung landwirtschaftlich genutzter Flächen weitgehend zu vermeiden.

3.2 Einschränkungen

Die räumliche Auflösung des Baugrundvorgutachtens ist abhängig von der Verfügbarkeit und Qualität der geologischen Informationen. Die geologischen Karten in Bayern sind bis zu einem Maßstab von 1:25.000 verfügbar. Bei den hydrogeologischen Karten sind flächendeckend Karten im Maßstab 1:100.000 vorhanden. Von den Archivbohrungen war nur ein kleiner Teil der Aufschlüsse innerhalb der geplanten Korridore situiert (vgl. Tabelle 1).

Der für die Gründung von Mastfundamten oder die Verlegung von Erdkabeln relevante Baugrund ist überwiegend durch eine unterschiedlich mächtige Verwitterungsschicht, die natürliche Bodenbildung, sowie von der Vegetation überprägt bzw. verdeckt. Die Geländeform, der Bewuchs und der Oberboden (umgepflügter Acker) lassen nur eingeschränkte Aussagen zum Untergrund zu. Bei der Kartierung ist man auf natürliche oder künstliche Bodenaufschlüsse angewiesen.

Vor Ort wurde festgestellt, dass die Aufschlussverhältnisse insgesamt schlecht sind. Es waren nur wenige natürliche oder künstliche Aufschlüsse vorhanden, anhand derer die Untergrundverhältnisse ersichtlich waren oder eine geologische/geotechnische Beschreibung der Bodenschichten möglich war. Außerdem lagen die Aufschlüsse nur teilweise innerhalb der geplanten Korridore. Zudem war die jahreszeitlich bedingte dichte Vegetationsdecke einerseits bei der Interpretation der Geländeform als auch bei der Zugänglichkeit der Trassen hinderlich.

Abbildung 4: links: Schlechte Aufschlussverhältnisse und eingeschränkte Zugänglichkeit entlang der Trasse; rechts: Eingeschnittener Unterführung unter Autobahn als bessere Informationsquelle zu den Untergrundverhältnissen

Es war daher die teilweise großräumige Interpolation zwischen weit entfernten Aufschlüssen notwendig, um den Baugrund zu beschreiben. Konkrete Aussagen zu einzelnen Maststandorten wurden getroffen, sind jedoch mit gewissen Unsicherheiten behaftet. Aussagen zu Grundwasserständen oder zu erwartenden Schichtmächtigkeiten sind als Orientierungswerte zu verstehen. Aufgrund der geologischen

Bernard Gruppe ZT GmbH Seite 8 von 26

Entstehungsgeschichte (Molassebecken) des Bearbeitungsraumes, der unterschiedlichen Ablagerungsbedingungen im Laufe der geologischen Geschichte sowie der eiszeitlichen Überprägung ist bereichsweise eine schnelle Änderung der Baugrundverhältnisse möglich. Auch die Schichtmächtigkeiten können stark variieren. Diese zu erwartenden kleinräumigen Änderungen können in dieser Phase nicht aufgelöst werden.

Die Angaben zu den Baugrundkennwerten beruhen auf Literaturwerten, Erfahrungswerten aus vergleichbaren geologischen Verhältnissen und der Bodensprache vor Ort an natürlichen Aufschlüssen.

Die Baugrundvoruntersuchung ersetzt keine auf das Bauwerk abgestimmte Baugrunduntersuchung, liefert aber erste Ansätze für die weitere Planung (Trassenwahl, Kostenschätzung, Erkundungsprogramm und Methoden).

4. Grundlagen

Kartengrundlagen:

- [1] BayernAtlas: Topographische Karte, Geländerelief, Luftbilder: https://geoportal.bayern.de/bayernatlas
- [2] <u>Bayrisches Landesamt für Umwelt, UmweltAtlas Bayern: Bohrungen und Hydrogeologische Karten https://www.umweltatlas.bayern.de/</u>
- [3] WMS-Dienste, <u>Bayrisches Landesamt für Umwelt</u>
 https://www.lfu.bayern.de/umweltdaten/geodatendienste/index_wms.htm und BayernAtlas

Titel	Quelle	WMS-Dienst
Digitale geologische Karte von Bayern 1:25.000 (dGK25)	LFU Bayern Geodatendienste	https://www.lfu.bayern.de/gdi/wms/g eologie/dgk25?
Digitale ingenieurgeologische Karte von Bayern 1:25.000 (dIGK25)	LFU Bayern Geodatendienste	https://www.lfu.bayern.de/gdi/wms/g eologie/digk25?
Geologische Karte von Bayern 1:500.000	LFU Bayern Geodatendienste	https://www.lfu.bayern.de/gdi/wms/g eologie/gk500?
Hinweiskarte Hohe Grundwasserstände	LFU Bayern Geodatendienste	https://www.lfu.bayern.de/gdi/wms/wassers/hohegrundwasserstaende?
Bodendenkmäler	BayernAltlas	https://geoservices.bayern.de/wms/v 1/ogc_denkmal.cgi
Überschwemmungsgebiete und Hochwassergefahren	LFU Bayern Geodatendienste	https://www.lfu.bayern.de/gdi/wms/wasser/ueberschwemmungsgebiete? https://www.lfu.bayern.de/gdi/wms/wasser/wassertiefen?
Digitale Hydrogeologische Karte 1:100.000 (dHK100)	LFU Bayern Geodatendienste	https://www.lfu.bayern.de/gdi/wms/g eologie/hk100?
Hydrogeologische Karte von Bayern 1:500.000 (HK500)	LFU Bayern Geodatendienste	https://www.lfu.bayern.de/gdi/wms/g eologie/hk500?

Bernard Gruppe ZT GmbH Seite 9 von 26

Digitales Orthofoto DOP80 Bayrische Vermessungsverwaltung https://geoservices.bayern.de/wms/v

GeoDatenOnline 2/ogc_dop80_oa.cgi?

Digitale Topographische Karte 1:50 Bayrische Vermessungsverwaltung http://www.geodaten.bayern.de/ogc/

OO GeoDatenOnline ogc_dtk50.cgi?

Digitale Topographische Karte
1:500 000

Bayrische Vermessungsverwaltung
GeoDatenOnline

http://www.geodaten.bayern.de/ogc/
ogc_dtk500_oa.cgi?

[4] Digitales Geländemodell (Gitterweite 50m), Landesamt für Digitalisierung, Breitband und Vermessung. OpenData

Verfügbare Unterlagen zum Bauvorhaben:

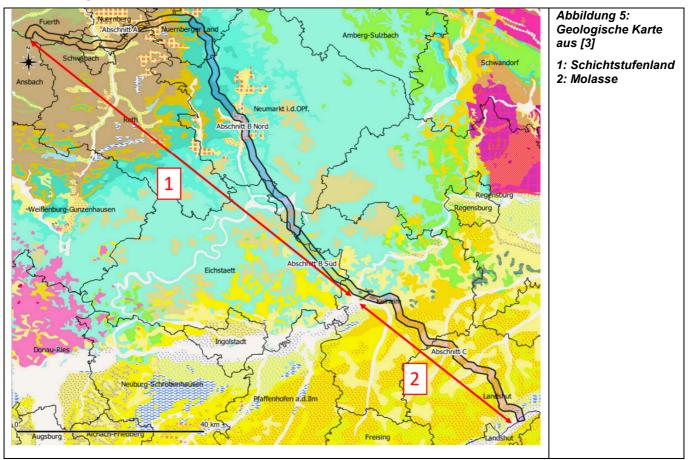
- [5] Geologische Karte, alle Abschnitte, übermittelt am 07.10.2021
- [6] Altlasten und Bodendenkmal, Abschnitt A, übermittelt am 07.12.2021
- [7] Grobtrassierung (Masten, Leitung), übermittelt am 16.12.2021
- [8] Grobtrassierung (Erdleitung), übermittelt am 12.01.2022

Normen, Regelwerk und Merkblätter:

- [9] DIN EN ISO 14688-1: Geotechnische Erkundung und Untersuchung Benennung, Beschreibung und Klassifizierung von Boden Teil 1: Benennung und Beschreibung, Ausgabe 2020 11
- [10] DIN EN ISO 14688-2: Geotechnische Erkundung und Untersuchung Benennung, Beschreibung und Klassifizierung von Boden Teil 2: Grundlagen für Bodenklassifizierungen, Ausgabe 2020 11
- [11] DIN 18300: VOB Vergabe- und Vertragsordnung für Bauleistungen Teil C: Allgemeine Technische Vertragsbedingungen für Bauleistungen (ATV) Erdarbeiten 2019-09:

Weitere Unterlagen:

- [12] LFU Bayern Geodatendienste, Datenstelle: Bohrdaten
- [13] Informationen zu Altlastenverdachtsflächen: https://www.lfu.bayern.de/altlasten/altlastenkataster/index.htm
- [14] Erläuterung zur Geologischen Karte von Bayern 1:500.000, 4. Neubearbeitete Auflage, Bayrisches Geologisches Landesamt, 1996
- [15] GeoBavaria, 600 Millionen Jahre Bayern, Bayrisches Geologisches Landesamt


Verwendete Software:

- [16] QGIS, Version 3.16.4 (Hannover)
- [17] DC Bohr, Version 5.56

Bernard Gruppe ZT GmbH Seite 10 von 26

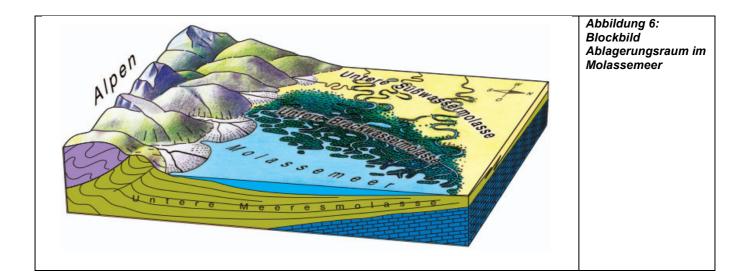
5. Geologischer Überblick

Nach Ausbildung, Lagerung und tektonischer Zugehörigkeit teilt man Bayern in die Großbaueinheiten Alpen, Molassebecken, Schichtstufenland sowie das Grundgebirge der Böhmischen Masse und des Spessarts ein. Die südliche Begrenzung Bayerns bilden die Alpen.

Im Bereich zwischen den Alpen und der Donau liegt das Molassebecken, welches in der Tertiärzeit den Abtragungsschutt des werdenden Alpengebirges aufgenommen hat. Den südlichen und westlichen Teil des Alpenvorlands prägen Moränen der eiszeitlichen Gletscher und daran anschließende Schotterterrassen. Von der Donau bei Regensburg bis Aschaffenburg erstreckt sich das Schichtstufenland als Teil der Süddeutschen Großscholle. Nach Nordwesten erschließen sich zunehmend ältere Abschnitte des Mesozoikums. Unterbrochen wird die Abfolge durch den weiten Kessel des Nördlinger Rieses, Zeugnis eines Meteoriteneinschlages im Tertiär. In weiten Bereichen Ost- und Nordostbayerns sowie im Nordwestteil des Spessarts prägen Gesteine des Grundgebirges die Landschaft. Sie entstanden bei der vorhandenen Variszischen Gebirgsbildung, als die bereits Gesteine unter Drücken und Temperaturen in Metamorphite umgewandelt wurden und Gesteinsschmelzen in die Erdkruste eingedrungen sind. Große Gebiete des Frankenwaldes und des Fichtelgebirges weisen dagegen nur schwach metamorphe paläozoische Gesteine auf.

Im Folgenden wird etwas näher auf die im Projektgebiet vorkommenden Großbaueinheiten des Schichtstufenlandes (1 in Abbildung 5) und des Molassebeckens (2 in Abbildung 5) eingegangen.

Bernard Gruppe ZT GmbH Seite 11 von 26

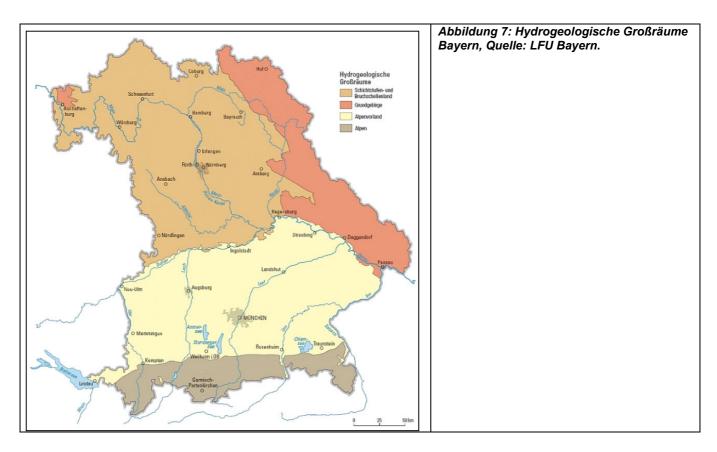


5.1 Schichtstufenland

Zwischen Spessart und Donau prägen mesozoische Sedimentgesteine die Landschaft. Zur Zeit von Trias und Jura entstanden großflächig Ablagerungen im kontinentalen bis flachmarinen "Germanischen Becken", das im Osten vom "Böhmischen Land" und im Süden durch die mitteljurassische Zeit vom "Vindelizischen Land" begrenzt war. In Perm, Kreide und Tertiär wurden dagegen nur bereichsweise Sedimente abgelagert. Der Nordschub der entstehenden Alpen ist Ursache dafür, dass das gesamte Schichtpaket um einige Grad verkippt wurde. Deshalb findet man die ältesten Gesteine im Nordwesten, die jüngeren im Süden und Osten. Verwitterung und Abtragung haben im Verlauf von Jahrmillionen die typische Schichtstufenlandschaft geformt.

5.2 Molasse

Als die Alpen zu einem Hochgebirge aufstiegen, bildete sich in ihrem nördlichen Vorland eine langgezogene Senke, das "Molassebecken". In diesem Trog wurde der Abtragungsschutt (Feinsedimente, Sande und Kiese) aus den Bergen geschüttet, der heute zum Teil verfestigt vorliegt. Im Zusammenspiel von Sedimentanlieferung, Einsinken des Beckens und Meeresspiegelschwankungen wurde in zwei großen Zyklen jeweils das ursprüngliche Meer ("Meeresmolasse") vom Festland ("Süßwassermolasse") abgelöst. Der Südteil der Molasse am Alpenrand, die "Faltenmolasse", ist im Gegensatz zur "Vorlandmolasse" noch in den alpinen Deckenbau einbezogen.


5.3 Hydrogeologie

5.3.1 Allgemein

Der geplante Trassenverlauf befindet sich, entsprechend der hydrogeologischen Großräume, größtenteils im Schichtstufen- und Bruchschollenland. Lediglich Abschnitt C befindet sich im Bereich des Alpenvorlandes.

Bernard Gruppe ZT GmbH Seite 12 von 26

Vorliegender Bericht erläutert die vorherrschenden hydrogeologischen Gegebenheiten des Trassenverlaufes im Abschnitt A. Informationen zu den anderen Abschnitten sind den jeweiligen Technischen Berichten zu entnehmen.

Abschnitt A befindet sich zur Gänze im Schichtstufen- und Bruchschollenland. Dieses umfasst den Nordwesten Bayerns nördlich der Donau und ist geologisch durch seine vielfach horizontalen sowie vertikalen Wechsel unterschiedlicher Sedimentfolgen geprägt, welche eher geringe Schichtneigungen aufweisen. Die Bandbreite der vorherrschenden Gesteine ist mit fein- und grobklastischen Sedimenten, marinen Bildungen und Evaporiten als vielfältig zu bezeichnen. Auf Grund der daraus resultierenden unterschiedlichen hydrogeologischen Eigenschaften, resultiert die Ausbildung einzelner Grundwasserstockwerke, in welchem die Grundwasserleiter und Grundwasserstauer in vertikaler Abfolge wechsellagig vorliegen.

5.3.2 Hydrogeologie Abschnitt A

Hydrogeologisch verläuft Abschnitt A durch Schichten des Quartärs und Keupers. Der Hauptteil der geplanten Maßnahme befindet sich im Sandsteinkeuper und wird östlich an der Grenze zu Abschnitt B vom Rhät / Lias bzw. Lias / Malm abgelöst. Quartäre Flussablagerungen sind dagegen nur im Bereich Schwabach, mittig des geplanten Trassenabschnittes, aufzufinden (Abbildung 8).

Bernard Gruppe ZT GmbH Seite 13 von 26

Im zu untersuchenden Gebiet wird der Sandsteinkeuper aus Burg- und Blasensandstein ausgebildet. Der Burgsandstein ist als tonig, lokal kiesiger Fein- bis Grobsandstein zu beschreiben, in welchem unregelmäßig auskeilende Tonsteinlagen und -linsen, bei einem ausgeprägten Lettenhorizont zu beobachten sind. Die typischen Mächtigkeiten variieren zwischen 50-115 m, wobei lokal eine Untergliederung in Oberen, Mittleren und Unteren Burgsandstein möglich ist. Dieser bildet meist, mit dem ebenfalls vorliegenden Blasensandstein, ein hydraulisch zusammenhängendes Grundwasserstockwerk und ist somit regional als einer der beutenden Kluft (Poren-) Grundwasserleiter, mit einer meist geringen bis mäßigen Trennfugendurchlässigkeit zu bezeichnen. Der Blasensandstein liegt dagegen als mürber Mittel- bis Grobsandstein vor, welcher einzelne Tonsteinhorizonte und -linsen aufweist. Regional liegt dieser feinkörnig, als Coburger Sandstein vor und bildet Mächtigkeiten zwischen 30-40 m. In Abbildung 9, einen Ausschnitt der Hydrogeologischen Karte Bayern HK 500, wird der Keuper entsprechend der erwähnten Schichteigenschaften als Kluft-(Poren-) Grundwasserleiter mit mäßiger bis mittlerer Gebirgsdurchlässigkeit beschrieben.

Bei den Quartären Flussablagerungen, im Bereich Schwabach, handelt es sich um Poren-Grundwasserleiter mit mäßiger bis mittlere Durchlässigkeit, welche größtenteils aus Talfüllungen des Rednitz- Pegnitz- und Regnitztals bestehen. Diese bilden sich aus Flusssanden und -schotter mit einem hohem Feinkornanteil und liegen mit Mächtigkeiten zwischen 10 – 30 m vor, wobei lokale Rinnen mit Mächtigkeiten über 30 m möglich sind.

Das vorliegende Rhät ist ein Festgestein- Grundwassergeringleiter, genauer ein Kluft-(Poren-) Grundwasserleiter mit variabler, eher geringer Trennfugendurchlässigkeit. Dies ist bedingt durch den vorherrschenden Fein- bis Grobsandstein, welcher Ton- und Mergelsteineinlagen vorweist und Mächtigkeiten zwischen 25 – 40 m ausbildet.

Bernard Gruppe ZT GmbH Seite 14 von 26

Unter Hinzunahme bereits bekannter Bohrungen des Landesamtes für Umwelt Bayern konnten einzelne Grundwasserstände im Bereich der Trasse in Erfahrung gebracht werden. Den Grundwassergleichen ist zu entnehmen, dass im Trassengebiet die Grundwasseroberfläche des Sandsteinkeupers nach Nordosten bzw. Nordwesten, Richtung Nürnberg abfällt. Im westlichen Bereich der Trasse von 370 m ü. NN bis 330 m ü. NN mit nordöstlichem Gefälle und im östlichen Bereich der Trasse von 370 m ü. NN bis 320 m ü. NN mit westlichem, nordwestlichem Gefälle. Die Grundwassergleiches des Benkersandsteins beginnen im Abschnitt A westlich des Korridors mit 340 m ü. NN und fallen westlich bis in den Raum Schwabach auf 300 m. ü NN ab, steigen dort wieder in westlicher Richtung bis hin zum Ort Feucht auf 340 m ü. NN an.

5.3.3 Hohe Grundwasserstände in Bayern ([3])

Bereiche hoher Grundwasserstände sind zusammenhängende Flächen oder Gebiete, in denen Grundwasserstände von weniger als 3 m unter Gelände gemessen wurden oder aufgrund der morphologischen bzw. hydrogeologischen Randbedingungen vermutet werden können. Diese Gebiete den **Einfluss** sind durch von Wasser geprägt (z.B. Wassersensible Bereiche. Überschwemmungsgebiete und Hochwassergefahrenflächen oder auch Trockentäler die als Abflussrinnen im Gelände dienen). Das Vorkommen hoher Grundwasserstände in Bayern ist eng an die naturräumliche Ausgangslage gebunden. Großflächig treten hohe Grundwasserstände in weiten Flusstälern, Ebenen und Niederungen mit Moorbildung auf. Abseits der Flusstäler bestimmt die räumliche Verbreitung oberflächennaher Grundwasserleiter das Auftreten hoher Grundwasserstände. Dies trifft insbesondere auf die Porengrundwasserleiter des Süddeutschen Molassebeckens zu. In den Festgesteinsgebieten Bayerns (Alpenraum und Nordbayern) sind hohe Grundwasserstände zumeist auf die Niederungen der schmalen Talkorridore begrenzt. Eine Besonderheit ist die häufig flache Lagerung oberflächennaher, grundwasserstauender Schichten des Schichtstufenlandes, die Grundwasservorkommen in geringer Tiefenlage mit flächigen Vernässungszonen hervorrufen können. Die Hinweiskarte Hohe Grundwasserstände wurde im Maßstab 1:500.000 erstellt und zeigt Bereiche, die potentiell von hohen Grundwasserständen betroffen sind. Sie ist nicht geeignet für die Darstellung absoluter

Bernard Gruppe ZT GmbH Seite 15 von 26

Grundwasserflurabstände. Grundsätzlich können hohe Grundwasserstände auch in den nicht explizit als betroffen ausgewiesenen Bereichen im Rahmen der natürlichen Gegebenheiten auftreten. Die Hinweiskarte enthält keine Grundstücksgrenzen. Die Betroffenheit einzelner Grundstücke kann deshalb nicht abgelesen werden. Aus den Inhalten der Karte ergeben sich keine Rechtsansprüche. Die Darstellung der Hinweiskarte hohe Grundwasserstände ist nur bis zu einem Maßstab von ca. 1:100.000 möglich.

Eine Einteilung nach Bereichen und Masten findet sich in Kapitel 10.4.

6. Bodendenkmäler

Bodendenkmäler können über den BayernAtlas [1] abgerufen oder als WMS-Dienst [3] in einem Desktop-GIS-System dargestellt werden. Die Auswertung der im Bearbeitungsgebiet vorhandenen Bodendenkmäler ergab, dass in einem Trassenkorridor von 200 m insgesamt 3 Denkmäler berührt werden. Die Lage der Denkmäler ist in Anhang 1.6 dargestellt und in der folgenden Tabelle aufgelistet. Die Bodendenkmäler auf denen direkt ein Mast geplant ist bzw. durch jene direkt eine Erdkabelleitung gebaut wird, sind fett dargestellt.

Tabelle 2: Bodendenkmäler

Bereich Mast	Verfahrensstand	Aktennummer	Beschreibung
Erdkabel Katzwang	Benehmen hergestellt, nachqualifiziert.	D-5-6632-0082	Siedlung des Neolithikums, der frühen Latènezeit sowie des Mittelalters und der frühen Neuzeit
540	Benehmen hergestellt, nachqualifiziert.	D-5-6632-0170	Erdbauten des Ludwig-Donau- Main-Kanals (1836-45).
721	Benehmen nicht hergestellt, nachqualifiziert.	D-5-6533-0115	Grabhügel vorgeschichtlicher Zeitstellung.

7. Altlasten

Die Informationen über Altlastenverdachtsflächen wurden seitens des Auftraggebers (TenneT) als GIS File zur Verfügung gestellt und sind Tabelle 3 zu entnehmen. Altlastenverdachtsflächen sind in Anhang 1.6 dargestellt. Die Altlasten auf denen direkt ein Mast gebaut wird sind fett dargestellt.

Tabelle 3: Im Trassenbereich liegende Altlastenflächen

Bereich Masten	Korridor	Altlasten Beschreibung	Nr. Karte
301	400	-	A1
620	200	-	A5
620	400	-	A6
621-630 (nicht auf Mastenstandorte)	200	-	A7
632	200	-	A8
652	200	-	А9

Bernard Gruppe ZT GmbH Seite 16 von 26

8. Kampfmittel

Zum Kampfmittelverdacht gibt es keine frei Abrufbare Daten. Eine Voreinschätzung des Kampfmittelverdachtes ist über eine kostenpflichtige Luftbildauswertung durch darauf spezialisierte Firmen möglich. Diese Auswertung erfolgt im Regelfall individuell für die vom Bauvorhaben betroffenen Flächen. Im Bereich A ist über die gesamte Strecke im generellen sowie im Bereich Nürnberg Süd (vgl. Abbildung 11) im Detail eine Kampfmitteluntersuchung auszuarbeiten.

9. Georisiken

Bekannte geogene Gefahren werden durch das Bayrische Landesamt für Umwelt erfasst und lassen sich über den BayernAtlas [1] abrufen bzw. als WMS-Dienst [3] in einem Desktop-GIS-System einbinden. Zusätzlich wurden vom Auftraggeber (TenneT) sämtliche Georisiken übermittelt. Im Bereich A befinden sich keine Georisiken wie Felsstürze, Rutschprozesse oder Dolinen / Erdfälle.

9.1 Überflutungsbereiche / Hochwasser

Potentielle Überflutungsbereiche können über den BayernAtlas [1] abgerufen oder als WMS-Dienst [3] in einem Desktop-GIS-System dargestellt werden. In Bayern werden folgende Szenarien unterschieden:

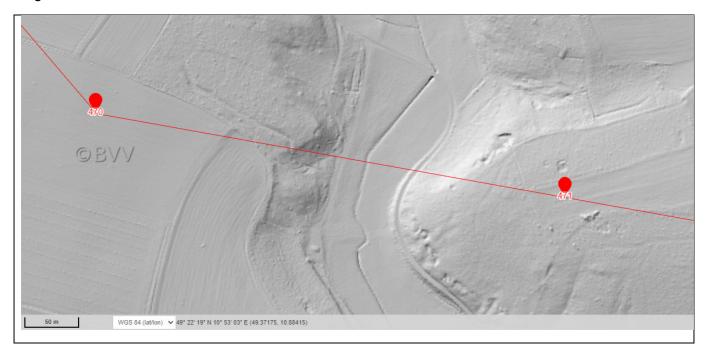
- <u>HQ_{Häufig}:</u> Unter einem häufigen Hochwasserereignis (HQ_{häufig}) wird ein Hochwasserabfluss verstanden, der statistisch gesehen im Mittel alle 5 bis 20 Jahre auftritt. Ein 5 bis 20-jährliches Hochwasser wird auch als "häufiges Hochwasser" bezeichnet, da es im Vergleich zum HQ₁₀₀ relativ häufig auftritt. Die Hochwassergefahrenflächen werden in der Regel für ein HQ₁₀ ermittelt und dargestellt.
- <u>HQ₁₀₀</u>: Abfluss, der an einem Standort im Mittel alle hundert Jahre überschritten wird. Da es sich um einen Mittelwert handelt, kann dieser Abfluss innerhalb von 100 Jahren mehrfach auftreten. Wenn Messzeiträume an Flüssen weniger als 100 Jahre umfassen, wird dieser Abfluss statistisch berechnet.
- <u>HQ_{extrem}:</u> Ein HQ_{extrem} entspricht in etwa einem HQ₁₀₀₀. Der HQ-Wert wird nach einheitlichen Standards entsprechend der an den bayerischen Gewässern vorhandenen Datengrundlage bestimmt oder abgeschätzt.

Eine Karte mit den dargestellten Überflutungsflächen ist in Anhang 1.4 dargestellt. Folgende Überschwemmungsgebiete liegen im Trassenabschnitt:

Tabelle 4: Überschwemmungsgebiete

Bereich Masten / Erdkabel	Korridor	Überschwemmung bei	Gerinne	Beschreibung	Bereiche in Karte (Anhang 1.4)
Erdkabel	quer	HQ _{häufig}	Rednitz	Überschwemmungsbereich ca. 570 m quer zur Trasse	ÜA1

Bernard Gruppe ZT GmbH Seite 17 von 26


10. Baugrund / Geologie

Eine Einteilung in drei Kategorien (gering, gering bis mittel und mittel bis hohe Tragfähigkeiten) erfolgte anhand der Geologischen Karte (vgl. Kapitel 5), der Ingenieurgeologischen Karte (Anhang 1.5), Archivbohrungen bzw. Bohrungen beim Bau von Bestandsmasten (vgl. Anhänge 3) sowie Geländebeobachtungen während der Trassenbegehung (vgl. Anhang 2). Es können topographisch bedingt kleinräumige Verschlechterungen (Tone bis Schluffe durch jüngere Ablagerungen) auftreten.

10.1 Topographie

Abschnitt A beginnt in der Fürth auf einer Höhe von 370 bis 400 m ü. NN. Die Topographie ist im Abschnitt A ziemlich unauffällig. Im Bereich der geplanten Erdleitung bei Katzwang (Nürnberg) ist die Topographie auf einem Minimum bei 300 m. Gegen Ende des Bereiches A steigt die Topographie leicht auf ein Maximum von 430 m an.

Anhand des Bayern Alas [1] wurde die Trasse verfolgt und auf Auffälligkeiten entlang der Trasse verglichen.

Bernard Gruppe ZT GmbH Seite 18 von 26

Abbildung 10: Erosionskanten im Geländerelief zu erkennen, Bereich Masten 470 bis 471, oben Geländerelief, unten Orthofoto aus Bayern Atlas [9], muss in diesem Bereich im Zuge des Leitungsbaues der Bewuchs (Wald) entfernt werden ist ein stabilisierender Vegetationsdecke herzustellen um Erosion zu vermeiden

Im Bereich A Masten 541 bis 542 sind im Geländemodell auffällige Strukturen zu erkennen die an Bombenkrater Erinnern. Ein Kampfmittelüberprüfung ist in diesem Bereich dringend zu empfehlen.

Abbildung 11:Vermutliche Bombenkrater im Geländerelief (links) zu erkennen, rechts Orthofoto, Bereich östlich Kornburg / Forst Kleinschwarzenlohe

10.2 Daten aus Umweltatlas

Es wurden Aufschlüsse im Nahbereich des Trassenkorridors aus dem Umweltatlas [2] digitalisiert und in das GIS Projekt eingearbeitet. Es wurde wo möglich versucht die Aufschlüsse im Gelände wiederzufinden. Großteils war dies nicht möglich aufgrund von Zugänglichkeiten. Die Ergebnisse aus dem Umweltatlas wurden digitalisiert und fließen in die Beurteilung mit ein. Eine Tabelle mit Aufschlüssen die innerhalb des 200 m Korridors liegen ist in Tabelle 5 zu sehen.

Bernard Gruppe ZT GmbH Seite 19 von 26

Tabelle 5: Aufschlüsse aus dem Umweltatlas, dunkelgrün: 200 m Korridor, hellgrün: 400 m Korridor, gelb: 600 m Korridor, rot: 1500 m Korridor

 Total Total Total Title				
ereich asten	Aufschluss Nummer	Beschreibung	Schichtdaten	
100	3	Steinbruch	-	
300	4	Sandgrube	·	
301	6	Sandgrube	-	
640	20	Steinbruch	-	
720	17	Sandgrube	-	
760	23	Sandgrube		

10.3 Bauwasserhaltung

Anhand von den im Kapitel **5.3.3** beschriebenen "Hohen Grundwasserständen" (d.h. potentielle Bereiche mit Grundwasserständen von weniger als 3,0 m unter Gelände) wurden betroffene Masten ermittelt und in Tabelle 6 dargestellt. Hier sollte besonderes Hauptaugenmerk auf die Wasserhaltung gelegt werden.

Tabelle 6: Potentielle Bereiche mit hohen Grundwasserständen (<3,0 m), vgl. auch Anhang 4

Masten (von / bis)	Gefahr
402, 300, Erdkabel Bereich Katzwang, 502, 503, 510, 611, 681, 692, 700,	Potentiell von hohen Grundwasserständen betroffene Gebiete

10.4 Baugrund / Geotechnik

Tabelle 7: Prognostizierte Tragfähigkeit mit Masten, vgl. auch Anhang 4

Masten (von / bis) von N nach S	Prognostizierte Tragfähigkeit
431-460 473-100 102,103 120,121 994-531 541-611 620-681	hoch bis sehr hoch
400-430 470-472 104,110 130-999 612 650 682 700-731 750,760	mittel bis hoch
101 540 691,692 732,740	gering bis mittel
690	gering

Bernard Gruppe ZT GmbH Seite 20 von 26

In Tabelle 7 sind die einzelnen Masten mit den dazugehörigen prognostizierten Tragfähigkeiten aufgelistet Anhand der prognostizierten Tragfähigkeiten können auf Wunsch des Auftraggebers Aussagen zu geplanten Fundamentarten gegeben werden.

Tabelle 8: Prognostizierte Fundamentart; vgl. auch Anhang 4

Prognostizierte Tragfähigkeit	Prognostizierte Fundamentart	Anmerkung
Hoch bis sehr hoch tragfähige Schichten	flache Fundamente	Vermutlich seicht anstehende Felslinie
Mittel bis hoch Tragfähige Schichten	flache Fundamente	-
Gering bis mittel tragfähiger Schichten	je nach Erkundung Flache bzw. Tiefe Fundamente	-
Gering tragfähiger Schichten	tiefe Fundamente	-

11. Erkundungskonzept

Die im Gutachten getroffenen Aussagen beruhen auf den verfügbaren Karten (insbesondere geologische Karte, Ingenieurgeologische Karten, Archivbohrungen, Georisiken) und der Kartierung vor Ort. Aufgrund der im Kapitel 3.2 genannten Einschränkungen ist das Gutachten als Vorgutachten zu verstehen und die Angaben zu Bodenkennwerten, Grundwasserständen und Gründungsempfehlungen sind erste Orientierungswerte. Die getroffenen Aussagen sind durch Baugrunduntersuchungen (direkte und indirekte Aufschlüsse) geophysikalische Untersuchungen im Bereich der Georisiken sowie geotechnische Laborversuche zu überprüfen.

Umwelttechnische Bodenuntersuchungen bzw. Erkundungen / Probennahmepläne gem. LAGA sind nicht Teil dieser BGVU.

11.1 Methodik

11.1.1 Baugrunderkundung

Ziel der Baugrunderkundung ist die Erfassung aller relevanten Daten, um die geologisch-geotechnischen Eigenschaften des Untergrundes zu beschreiben und um daraus verlässliche geotechnische Kennwerte abzuleiten. Diese Angaben werden benötigt, um etwaige statischen Bemessungen von Baugrubensicherungen, Bauwasserhaltungen und Fundamenten sowie den Verlauf von Baustraßen im weiteren Projektverlauf fachgerecht planen zu können.

Folgende Informationen sollen durch die Baugrunderkundung gewonnen werden:

- Bodenart (Fels, Lockersediment, Kornverteilung, bindig, nicht bindig, ...)
- Schichtaufbau des Untergrundes
- Grundwasserstand und Schwankungshöhe im Projektgebiet
- Chemische Eigenschaften des Grundwassers (Betonaggressivität)
- Bodenmechanische Eigenschaften (z.B.: Lagerungsdichte, Konsistenz, Korngrößenverteilung, Wassergehalt, Durchlässigkeit, Scherparameter, Steifemodul,...)

Bernard Gruppe ZT GmbH Seite 21 von 26

- Ableitung der Tragfähigkeit der Schichten
- Eventuelle Verkarstungserscheinungen (Dolinen) im Untergrund durch geophysikalische Methoden

Freileitungen: Bei Freileitungen sind grundsätzlich alle Maststandorte zu untersuchen. Die angewendete Untersuchungsmethode (Bohrungen, Sondierungen, Baggerschürfe) kann abhängig von den erwarteten Baugrundverhältnissen gewählt werden. Aufgrund der erforderlichen Gründung und der Lasten, die in den Boden abgetragen werden müssen, ist die Tragfähigkeit des Untergrundes der maßgebende Parameter.

Erdkabel: Als Richtwert für die Anzahl der erforderlichen Aufschlüsse gelten die Empfehlungen in [9]: ein Aufschluss pro 50 bis 200 m für Linienbauwerke. Das Raster kann in Abhängigkeit der erwarteten Baugrundverhältnisse (homogen oder inhomogen) verdichtet oder auch erweitert werden. Die Tragfähigkeit ist bei Erdkabelverlegung nur indirekt von Bedeutung, da keine hohen Lasten in den Untergrund abgetragen werden müssen. Wichtige Informationen bei der Verlegung von Erdkabel ist die Befahrbarkeit der Trasse, der Grundwasserstand, die Lösbarkeit des Bodens und der zulässige Böschungswinkel.

Aufgrund der sensiblen Thematik (Naturschutz) im Bereich Erdkabel Katzwang gibt es von diesem Abschnitt bereits Studien und Variantenauswertungen. Gemäß AG sind für diesem Abschnitt schon Baugrunduntersuchungen geplant, es wird daher im Folgenden nicht weiter auf Erkundungen im Erdkabelabschnitt eingegangen.

In Tabelle 9 sind die wichtigsten direkten Aufschlussmethoden, die in diesem Abschnitt in Frage kommen, beschrieben.

Tabelle 9: Aufschlussmethoden

Art	Vorteil	Nachteil
Baggerschürfe (SG): Schurf mit Rad- oder Raupenbagger, Aufnahme des Schurfes durch Geologen oder Geotechniker	 Relativ schnell und kostengünstig Großer Aufschluss Entnahme von großen Probenmengen und ungestörten Probenmöglich Gute Bewertung der Lösbarkeit des Bodens und der Böschungswinkel möglich 	 Eingeschränkte Aufschlusstiefe (max. 3,0 bis 4,0 m) Vergleichsweise große Flurschäden (sowohl durch die Zufahrt als auch den Schurf selbst)
Rammkernsondierung (RKS): Durchmesser 50 – 60 mm	 geringe Flurschäden (kleines leichtes Raupengerät) auch in schwer zugänglichen Bereichen und unwegsamen Gelände einsetzbar als provisorischer Grundwassermesspegel ausbaubar 	 Aufschlusstiefe systembedingt auf ca. 5,0 bis 8,0 m begrenzt In kiesigen Böden nur eingeschränkt geeignet Geringe Probenmenge und hohe Kernverluste möglich Empfindlich bei Bohrhindernissen (große Steine oder Blöcke) stark gestörtes Bodenprofil

Bernard Gruppe ZT GmbH Seite 22 von 26

Rammsondierung (Typ DPH): DIN

EN ISO 22476-2, schwere Rammsondierung, indirekter Aufschluss

- Ableitung der Tragfähigkeit über die Schlagzahlen
- Aufschlusstiefe 10 bis 15 m möglich
- geringe Flurschäden (kleines leichtes Raupengerät)
- auch in schwer zugänglichen Bereichen und unwegsamen Gelände einsetzbar
- Kein direkter Aufschluss, keine Probennahme
- Empfindlich bei Bohrhindernissen (große Steine oder Blöcke)

<u>Drucksondierung (CPT): *</u>DIN EN ISO 22476-1, Cone penetration test

*Versuche werden in der ersten
Phase nicht festgelegt sind jedoch
für Detailuntersuchungen bei
besserer Kenntnis des
Untergrundes (nach
Aufschlussbohrung) zu empfehlen.

- Direktes Ablesen des Spitzendruckes und der Mantelreibung
- · Hinweise auf Porenwasserdruck
- Aufschlusstiefen von >15m bei geeigneten Böden
- Bei stark kiesigen bzw. steinigen Böden / Lagen nur sehr eingeschränkt anwendbar
- größerer Platzbedarf (geräteabhängig)
- Zufahrt muss gewährleistet sein
- Flurschäden
- teuer

Aufschlussbohrung:

Trockene Kernbohrung, drehend oder rammend, Durchmesser ca. 100 bis 200 mm

- große Erkundungstiefen möglich
- große Probenmenge
- relativ ungestörtes Bodenprofil / Felsqualität
- Bohrkerne können in Kernkisten archiviert werden
- Bohrhindernisse können durchörtert werden
- als Grundwasserpegel ausbaubar
- ergänzende Bohrlochversuche möglich (SPT-Test oder hydraulische Versuche), optischer
 / akustischer Scanner bei Felsstrecken (HDD Querungen)

- Vergleichsweise teuer
- größerer Platzbedarf (geräteabhängig)
- Zufahrt muss gewährleistet sein
- Flurschäden

Bernard Gruppe ZT GmbH Seite 23 von 26

Für die Bestimmung der bodenmechanischen Eigenschaften sind voraussichtlich folgende Laborversuche maßgeblich:

- Bestimmung des Wassergehaltes,
- Nasssiebung und kombinierte Sieb-Schlämmanalyse (Kornverteilung),
- Glühverlust (Bestimmung des organischen Anteils),
- Konsistenzgrenzen,
- Triaxialversuch (Bestimmung der Scherparameter),
- Kompressionsversuch (Bestimmung des Steifemoduls)

Die Anzahl der erforderlichen Laborversuche ist abhängig von den angetroffenen Bodenverhältnissen. Wird beispielsweise bei den Erkundungsarbeiten Grundwasser im Bereich zukünftiger Betonteile angetroffen, muss die Betonaggressivität des Wassers untersucht werden.

Zur Bestimmung der hydrogeologischen Eigenschaften (Wasserstand, Durchlässigkeit) ist ggf. der Ausbau von Pegeln (Bestimmung Grundwasserstand) und die Durchführung von Versuchen (Versickerungsversuch, Auffüllversuch oder Pumpversuch) erforderlich.

11.2 Erkundungsprogramm

Das notwendige Erkundungsprogramm wird auf die prognostizierte Tragfähigkeit abgestimmt (vgl. Anhang 1.10).

Tabelle 10: Vorgeschlagene Erkundungen

Prognostizierte Tragfähigkeit	Vorgeschlagene Erkundungen	Menge / Beschreibung
Hoch bis sehr hoch tragfähige Schichten	Baggerschurf	Jeder Masten (Zentrum), Tiefe: Felslinie
	DPH	Bei Nichtantreffen Felslinie im Baggerschurf
	Aufschlussbohrungen inkl. SPT Tests	Bei weiten Strecken hoch bis sehr hoch tragfähige Schichten und tieferliegender Felslinie sind ggf. zusätzliche Aufschlussbohrungen notwendig
Mittel bis hoch Tragfähige Schichten	Baggerschurf	Jeder Masten (Zentrum), Tiefe 3-4m
	Aufschlussbohrungen inkl. SPT Tests	Jeder 4. Masten (1, 5, 9, im Zentrum) Tiefe 10-15m zur Verifizierung des tieferen Untergrundes
Gering bis mittel tragfähiger Schichten	Aufschlussbohrung inkl. SPT Tests	Jeder Masten (Zentrum), Tiefe: 10-20m
	DPH	Jeder Masten (Zentrum), ca. 1-1,5m versetzt von Aufschlussbohrung), Tiefe: 10-15m
Gering tragfähiger Schichten	Aufschlussbohrung inkl. SPT Tests	Jeder Masten (2x Mastfuß – diagonal), Tiefe: 15-30m
	DPH	Jeder Masten (Zentrum): Tiefe: 10-15m
	CPT	Kann alternativ zu DPH eingesetzt werden

Zur Ermittlung der geomechanischen Eigenschaften werden folgende Labor- bzw. Feldversuche vorgeschlagen. Die angegebene Anzahl an Laborversuchen dient der Orientierung und ist abhängig von den angetroffenen Untergrundverhältnissen durch den begleitenden Geologen festzulegen.

Bernard Gruppe ZT GmbH Seite 24 von 26

Tabelle 11: Vorgeschlagene Untersuchungen / Prüfungen

Vorgeschlagene Untersuchungen	Abgeschätzte Menge auf gesamter Trasse	Bemerkung
SPT Versuche in jeder Bohrung	mind. 3 Stück in unterschiedlichen Tiefen	Variable Tiefen je nach Bodenschichten
Sieb- Schlämmanalyse inkl. Bestimmung Wassergehalt	2-3 pro Aufschluss (Bohrung, Baggerschurf)	von repräsentativen Bodenschichten
Glühverlust	10-15 auf gesamte Trasse	Nur bei Verdacht auf organisches Material
Konsistenzgrenzen	1-2 pro Aufschluss (Bohrung, Baggerschurf)	von repräsentativen Bodenschichten
Triaxialversuch	10-15 Prüfungen	von Homogenbereichen
Kompressionsversuch (Ödometer)	10-15 Prüfungen	von Homogenbereichen
Betonaggressivität	10 Prüfungen	Bei Antreffen von Grundwasser in voraussichtlicher Bauteiltiefe
Stahlkorrosivität	10 Prüfungen	Bei Antreffen von Grundwasser in voraussichtlicher Bauteiltiefe

Tabelle 12: Vorgeschlagene hydrogeologische Untersuchungen

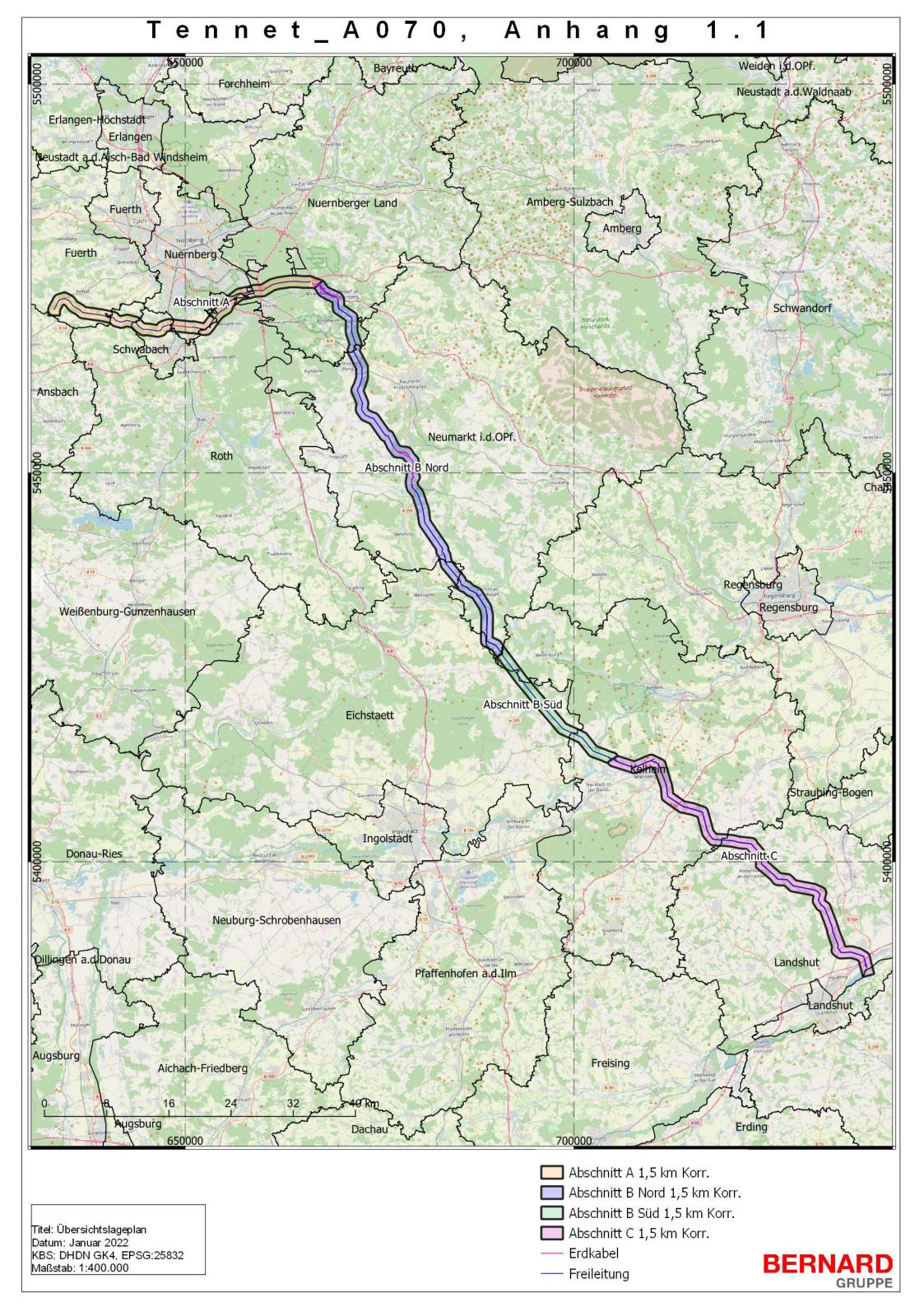
Vorgeschlagene Untersuchungen	Abgeschätzte Menge auf gesamter Trasse	Bemerkung
Ausbau zur Grundwassermessstelle	10-15 auf gesamte Trasse	Abhängig von angetroffenen Grundwasserverhältnissen, durch die geologische Begleitung Vorort festzulegen. Bei seichten GW Verhältnissen (bis 3,0 m unter GOK) wird empfohlen ausgewählte Bohrungen zu GW Messstellen auszubauen.
Bestimmung der Durchlässigkeiten	10-15 auf gesamte Trasse	Ableitung aus der Bodenansprache und den Korngrößenverteilungen aus den Siebungen. Bei Baugruben im Grundwasser Schwankungsbereich sollte aufgrund von eventuell benötigten GW Absenkungen ein Pumpversuch durchgeführt werden.

12. Schlussbemerkungen

Die gemachten Angaben beruhen auf den vorhandenen Daten und der Trassenbegehung. In dieser Projektphase wurden keine Untergrunderkundungen durchgeführt. Die Bodenkennwerte und Gründungsempfehlungen sind nach Abschluss der Baugrunderkundungen (Baugrundhauptuntersuchungen) zu überprüfen.

Bernard Gruppe ZT GmbH Seite 25 von 26

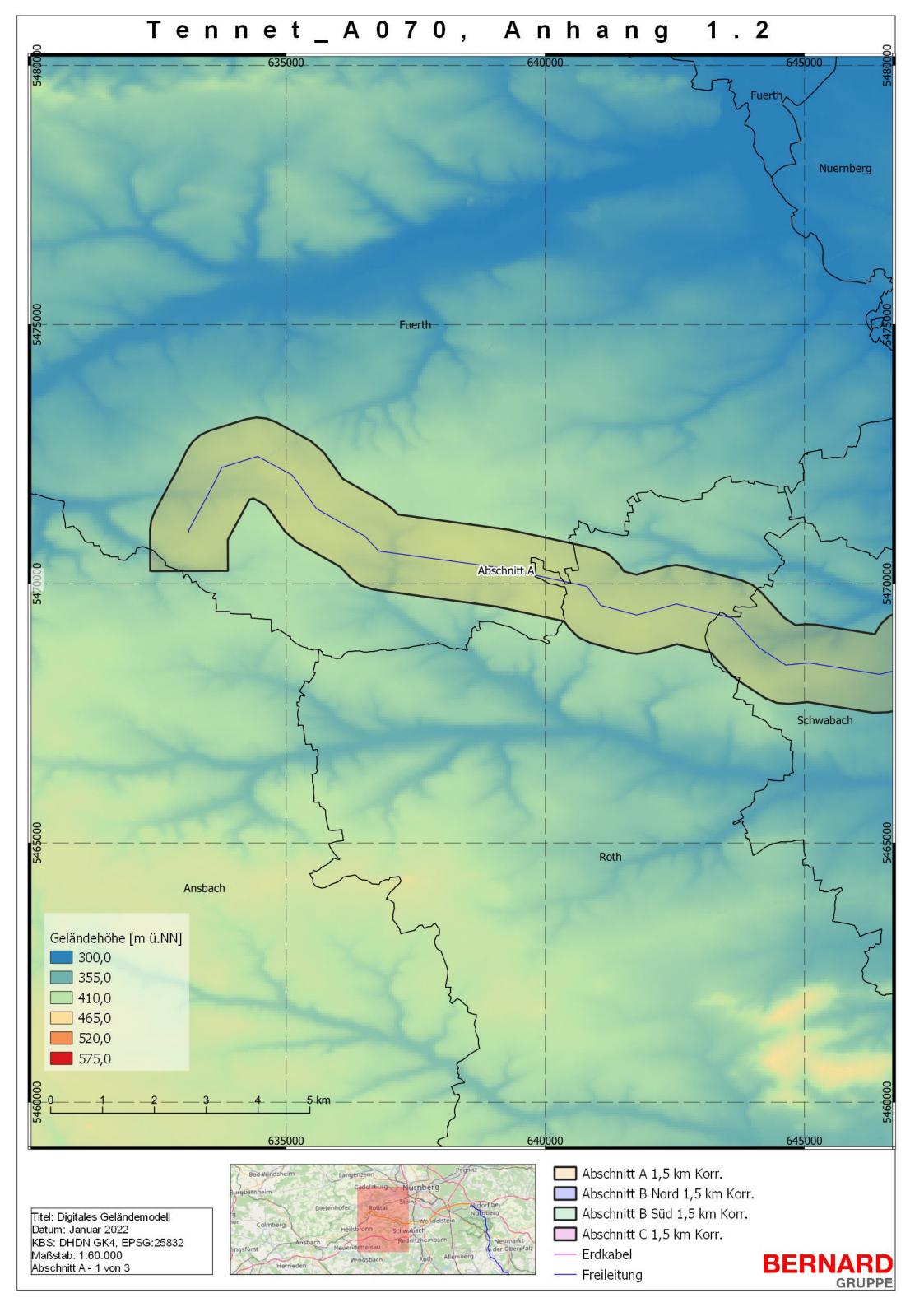
13. Anhang

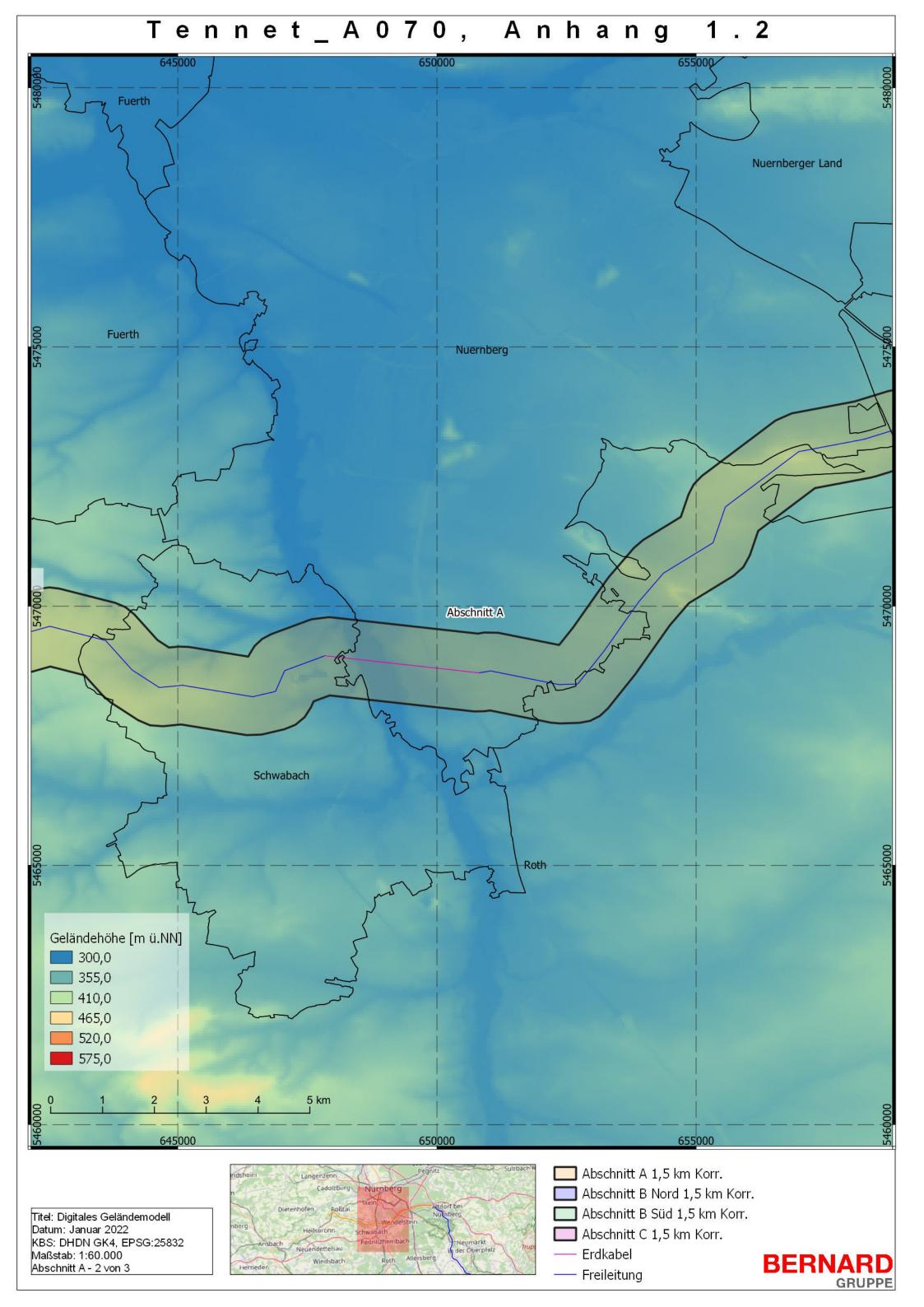

- 1 Planunterlagen
 - 1.1 Übersichtslageplan
 - 1.2 Digitales Geländemodell, Topographie, Maßstab 1 : 60.000
 - 1.3 Lage der Bohrungen, Maßstab 1: 30.000
 - 1.4 Überflutungsflächen, Maßstab 1: 30.000
 - 1.5 Geologische Karte, Maßstab 1: 30.000
 - 1.6 Bodendenkmäler, Altlasten, Altlasten, Maßstab 1:30.000
 - 1.7 Georisken, Maßstab 1: 30.000
 - 1.8 Hinweiskarte hohe Grundwasserstände, Maßstab 1: 30.000
 - 1.9 Luftbild mit Fotos, 1: 30.000
 - 1.10 Baugrundkarte mit Klassifizierung Masten nach Beeinträchtigung, Maßstab 1: 30.000
- 2 Fotodokumentation der Trassenbegehung
- 3 Archivbohrungen
 - 3.1 Liste der Archivbohrungen
 - 3.2 Bohrprofile Korridor 200m
 - 3.3 Bohrprofile Korridor 400m
 - 3.4 Bohrprofile Korridor 600m
 - 3.5 Bohrprofile Korridor >600m
- 4 Klassifizierung der Masten

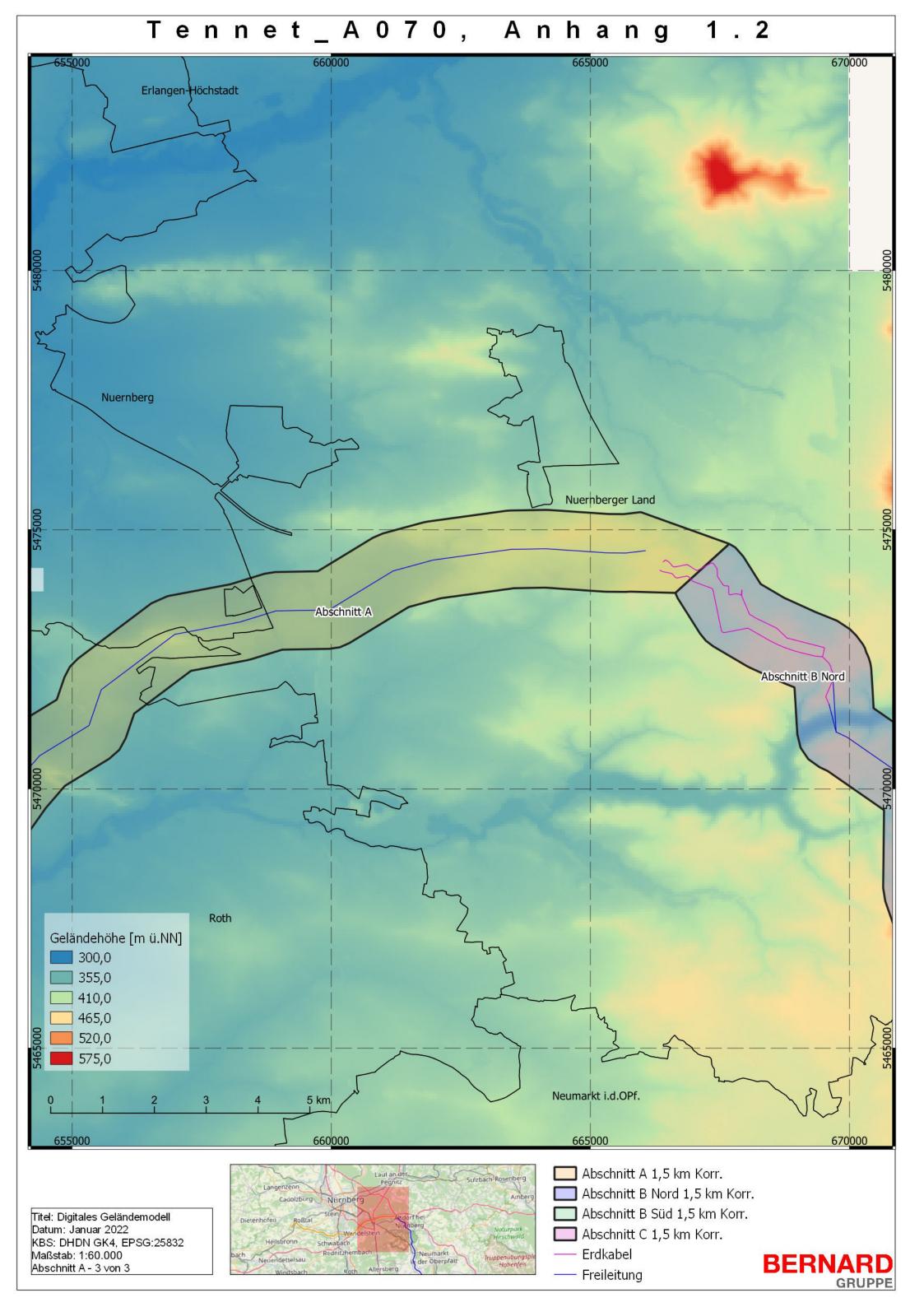
Bernard Gruppe ZT GmbH Seite 26 von 26

ABSCHNITT A - ANHANG:

- 1 Planunterlagen
 - 1.1 Übersichtslageplan
 - 1.2 Digitales Geländemodell, Topographie, Maßstab 1 : 60.000
 - 1.3 Lage der Bohrungen, Maßstab 1: 30.000
 - 1.4 Überflutungsflächen, Maßstab 1: 30.000
 - 1.5 Geologische Karte, Maßstab 1: 30.000
 - 1.6 Bodendenkmäler, Altlasten, Maßstab 1: 30.000
 - 1.7 Georisiken, Maßstab 1: 30.000
 - 1.8 Hinweiskarte hohe Grundwasserstände, Maßstab 1: 30.000
 - 1.9 Luftbild mit Fotos, 1: 30.000
 - 1.10 Baugrundkarte mit Klassifizierung Masten nach Beeinträchtigung, Maßstab 1: 30.000
- 2 Fotodokumentation der Trassenbegehung
- 3 Archivbohrungen
 - 3.1 Liste der Archivbohrungen
 - 3.2 Bohrprofile Korridor 200m
 - 3.3 Bohrprofile Korridor 400m
 - 3.4 Bohrprofile Korridor 600m
 - 3.5 Bohrprofile Korridor >600m
- 4 Klassifizierung der Masten




Tennet_A070, Anhang Erlangen-Höchstadt Heroldsberg Nuernberger Land Nuernberg Abschnitt B Nord Abschnitt A Schwabach/ Neumarkt .d.OPf. Abenberg 15 km 630000 Weißenburg-Gunzenhausen 640000 650000 660000 Abschnitt A 1,5 km Korr. Abschnitt B Nord 1,5 km Korr. Abschnitt B Süd 1,5 km Korr. Titel: Übersichtslageplan Abschnitt C 1,5 km Korr. Datum: Januar 2022 Erdkabel KBS: DHDN GK4, EPSG:25832 **BERNARD** Maßstab: 1:150.000 Freileitung **GRUPPE**



ABSCHNITT A - ANHANG:

- 1 Planunterlagen
 - 1.1 Übersichtslageplan
 - 1.2 Digitales Geländemodell, Topographie, Maßstab 1: 60.000
 - 1.3 Lage der Bohrungen, Maßstab 1: 30.000
 - 1.4 Überflutungsflächen, Maßstab 1: 30.000
 - 1.5 Geologische Karte, Maßstab 1: 30.000
 - 1.6 Bodendenkmäler, Altlasten, Maßstab 1: 30.000
 - 1.7 Georisiken, Maßstab 1: 30.000
 - 1.8 Hinweiskarte hohe Grundwasserstände, Maßstab 1: 30.000
 - 1.9 Luftbild mit Fotos, 1: 30.000
 - 1.10 Baugrundkarte mit Klassifizierung Masten nach Beeinträchtigung, Maßstab 1: 30.000
- 2 Fotodokumentation der Trassenbegehung
- 3 Archivbohrungen
 - 3.1 Liste der Archivbohrungen
 - 3.2 Bohrprofile Korridor 200m
 - 3.3 Bohrprofile Korridor 400m
 - 3.4 Bohrprofile Korridor 600m
 - 3.5 Bohrprofile Korridor >600m
- 4 Klassifizierung der Masten

ABSCHNITT A - ANHANG:

- 1 Planunterlagen
 - 1.1 Übersichtslageplan
 - 1.2 Digitales Geländemodell, Topographie, Maßstab 1 : 60.000
 - 1.3 Lage der Bohrungen, Maßstab 1: 30.000
 - 1.4 Überflutungsflächen, Maßstab 1: 30.000
 - 1.5 Geologische Karte, Maßstab 1: 30.000
 - 1.6 Bodendenkmäler, Altlasten, Maßstab 1: 30.000
 - 1.7 Georisiken, Maßstab 1: 30.000
 - 1.8 Hinweiskarte hohe Grundwasserstände, Maßstab 1: 30.000
 - 1.9 Luftbild mit Fotos, 1: 30.000
 - 1.10 Baugrundkarte mit Klassifizierung Masten nach Beeinträchtigung, Maßstab 1: 30.000
- 2 Fotodokumentation der Trassenbegehung
- 3 Archivbohrungen
 - 3.1 Liste der Archivbohrungen
 - 3.2 Bohrprofile Korridor 200m
 - 3.3 Bohrprofile Korridor 400m
 - 3.4 Bohrprofile Korridor 600m
 - 3.5 Bohrprofile Korridor >600m
- 4 Klassifizierung der Masten

Tennet_A070, Anhang Cado 282590 637500 Ammerndorf 4 Zirndorf Großhabersdorf 421 430 431 440 m 3000 410 402 450 Abschnitt A 452 m 4500 471 472 473 474 m 6000 475 EWS 200m Korridor EWS 400m Korridor leilsbronn 🗣 EWS 600m Korridor EWS >600m Korridor Bohrung 200m Korridor Bohrung 400m Korridor Bohrung 600m Korridor ◆ Bohrung >600m Korridor Bad Windsheim Abschnitt A 1,5 km Korr. — Erdkabel Cadelzburg Nürnberg Abschnitt B Nord 1,5 km Korr. — Freileitung Titel: Lage der Bohrungen Abschnitt B Süd 1,5 km Korr. Datum: Januar 2022 Colmberg

Abschnitt C 1,5 km Korr. KBS: DHDN GK4, EPSG:25832 Neuendettelsau **BERNARD** Masten aus Trassierung Seite:Bereich A - 1 ∨on 6

GRUPPE

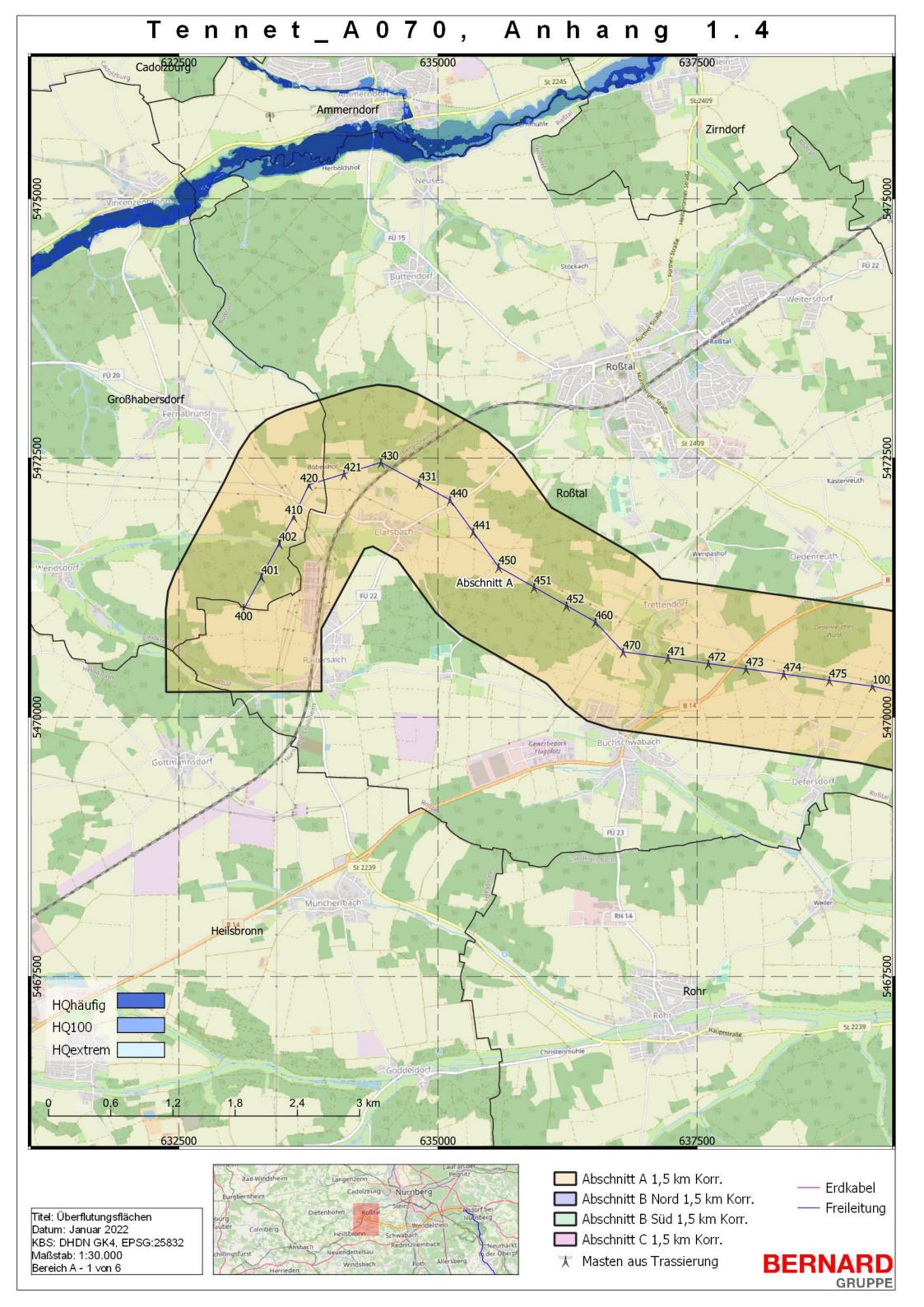
Maßstab: 1:30.000

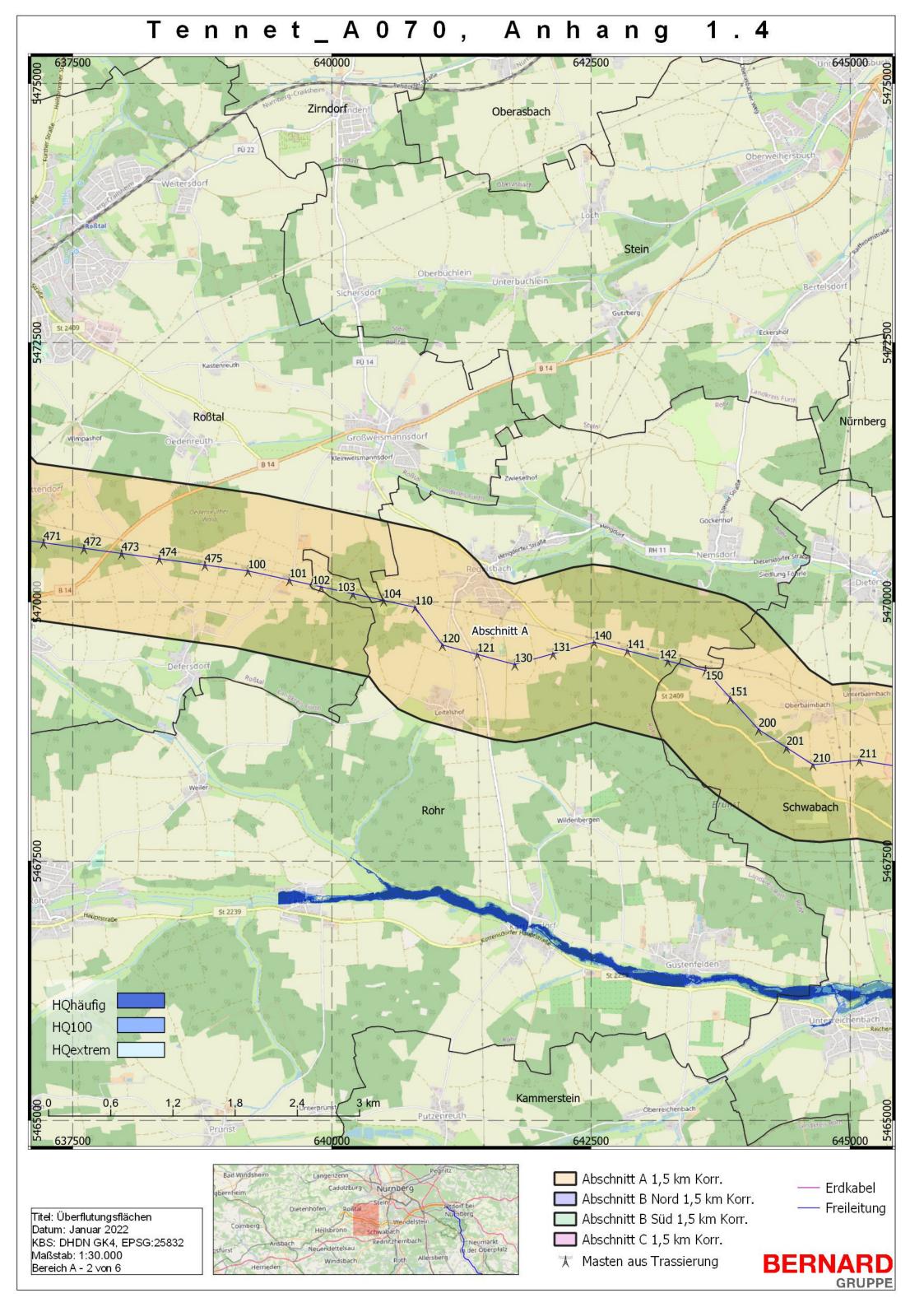
Tennet_A070, Anhang 640000 Zirndorf Oberasbach 100 m 6000 475 102 103 104 m 7500 m 90000 110 120 Abschnitt A 131 140 m 12000 142 150 m 10500 151 14 200 m 13500 201 Schwabach EWS 200m Korridor EWS 400m Korridor € EWS 600m Korridor EWS >600m Korridor Bohrung 200m Korridor Bohrung 400m Korridor Bohrung 600m Korridor Bohrung >600m Korridor Kammerstein Bad Windsheim 🔲 Abschnitt A 1,5 km Korr. Erdkabel Cadolzburg Nurnberg Abschnitt B Nord 1,5 km Korr. — Freileitung Titel: Lage der Bohrungen Abschnitt B Süd 1,5 km Korr. Datum: Januar 2022 Abschnitt C 1,5 km Korr. KBS: DHDN GK4, EPSG:25832 Neumarkt Neuendettelsau Maßstab: 1:30.000 Masten aus Trassierung BERNARD Windsbach Seite:Bereich A - 2 ∨on 6 **GRUPPE**

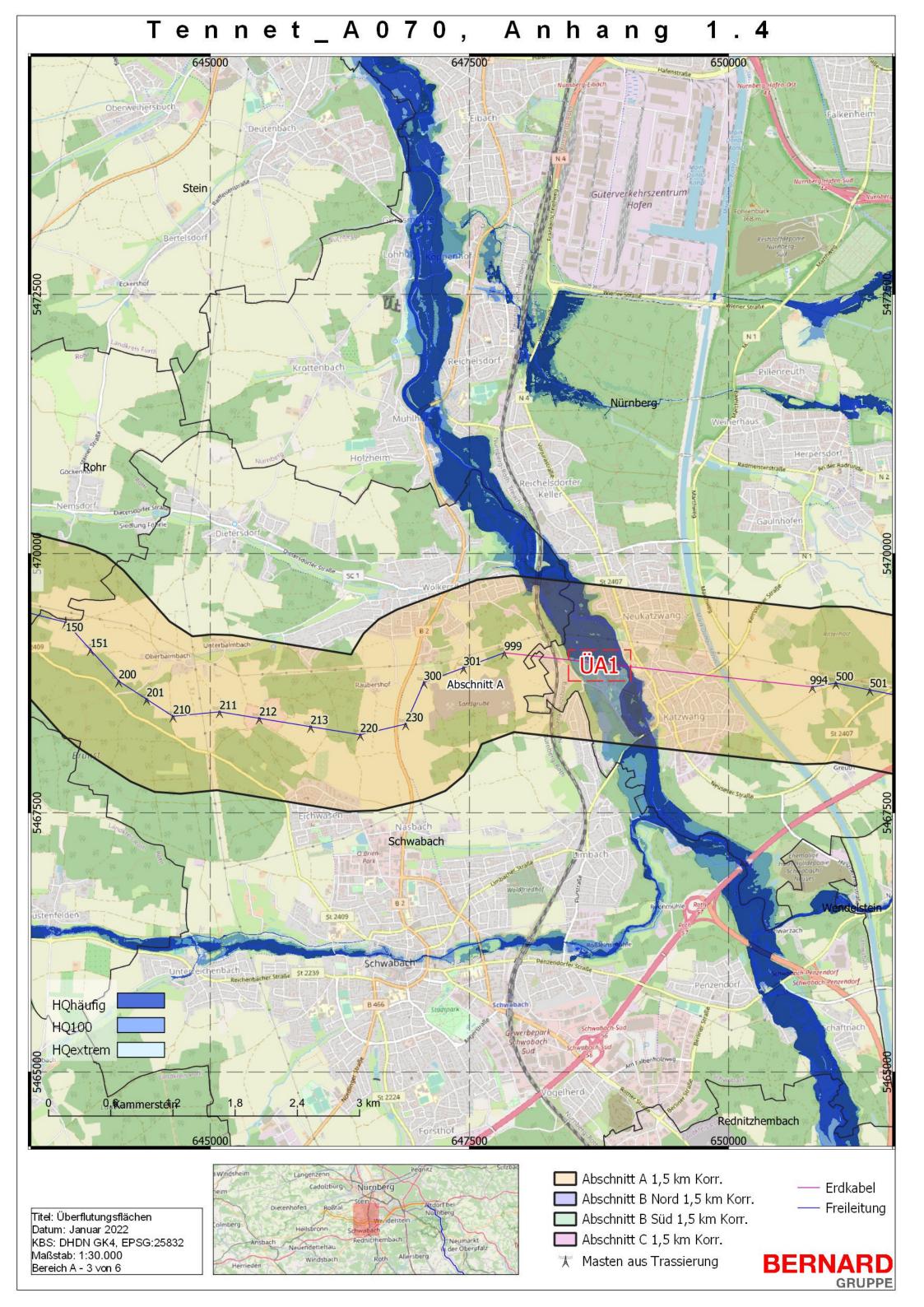
Tennet_A070, Anhang Nürnberg 999 300 m 16500 Abschnitt A 21 220 230 m 19500 33 (91 m 18000 151 200 994 500 m 21000 m 13500 201 211 212 210 213 m 15000 Schwabach EWS 200m Korridor EWS 400m Korridor EWS 600m Korridor EWS >600m Korridor ⊕ Bohrung 200m Korridor Bohrung 400m Korridor Bohrung 600m Korridor Bohrung >600m Korridor ⁰Rammersteln² Rednitzhembach 650000 Abschnitt A 1,5 km Korr. — Erdkabel Cadolzburg Nurnberg Abschnitt B Nord 1,5 km Korr. — Freileitung Dietenhofen Titel: Lage der Bohrungen Abschnitt B Süd 1,5 km Korr. Datum: Januar 2022 Heilsbronn Abschnitt C 1,5 km Korr. Neumarkt der Oberpfalz KBS: DHDN GK4, EPSG:25832 Neuendettelsau Maßstab: 1:30.000 **BERNARD** Masten aus Trassierung Windsbach

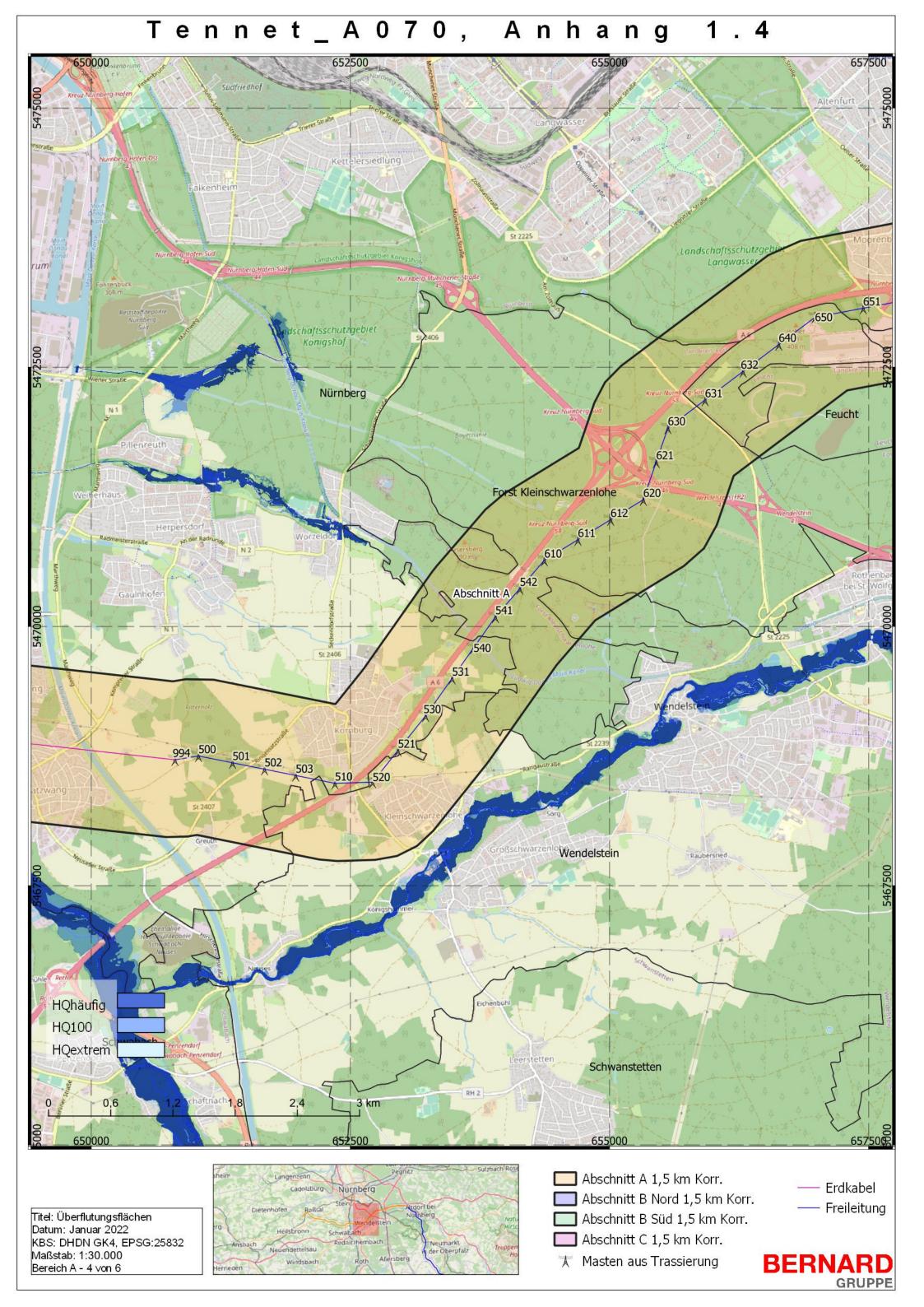
GRUPPE

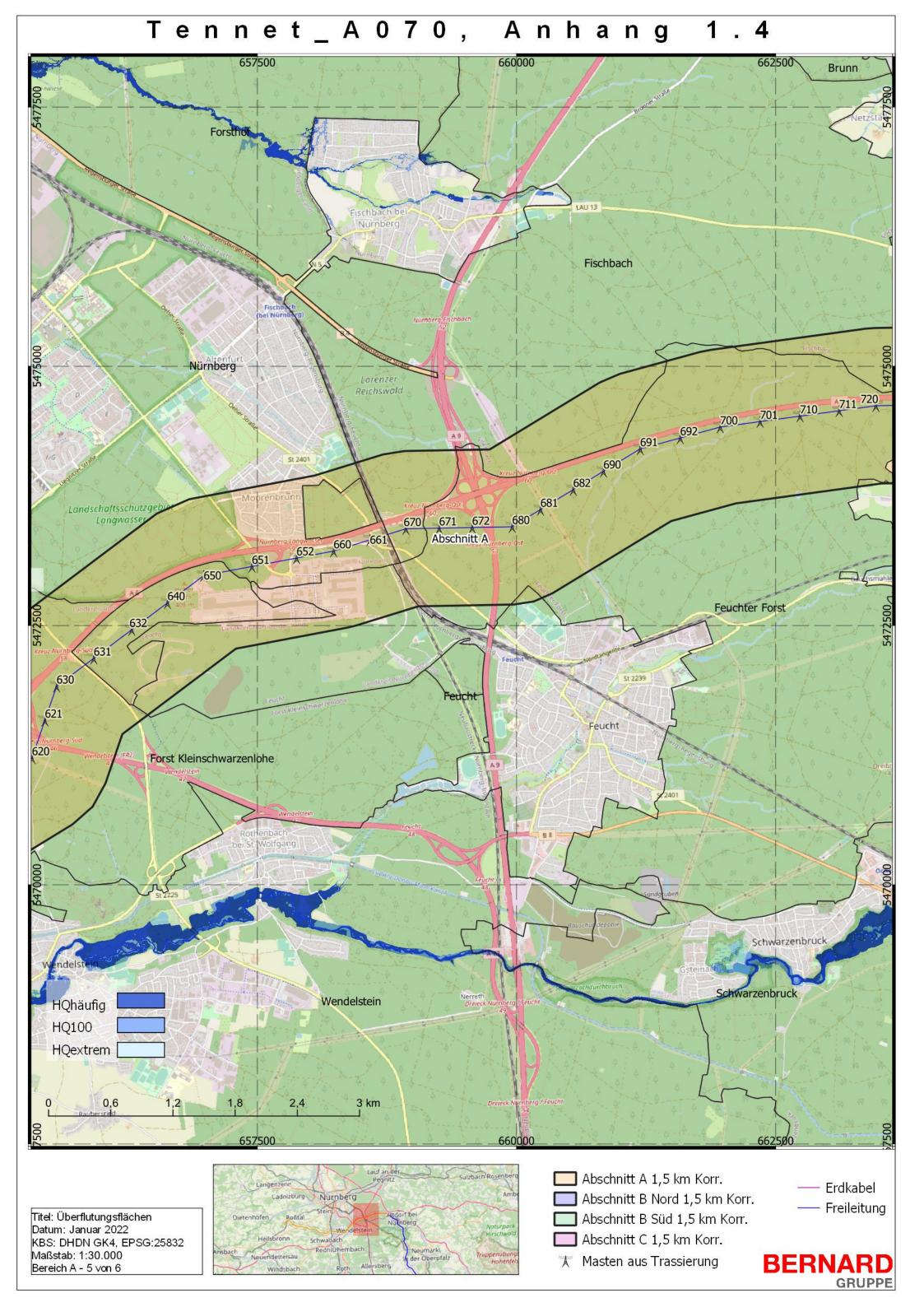
Seite:Bereich A - 3 ∨on 6

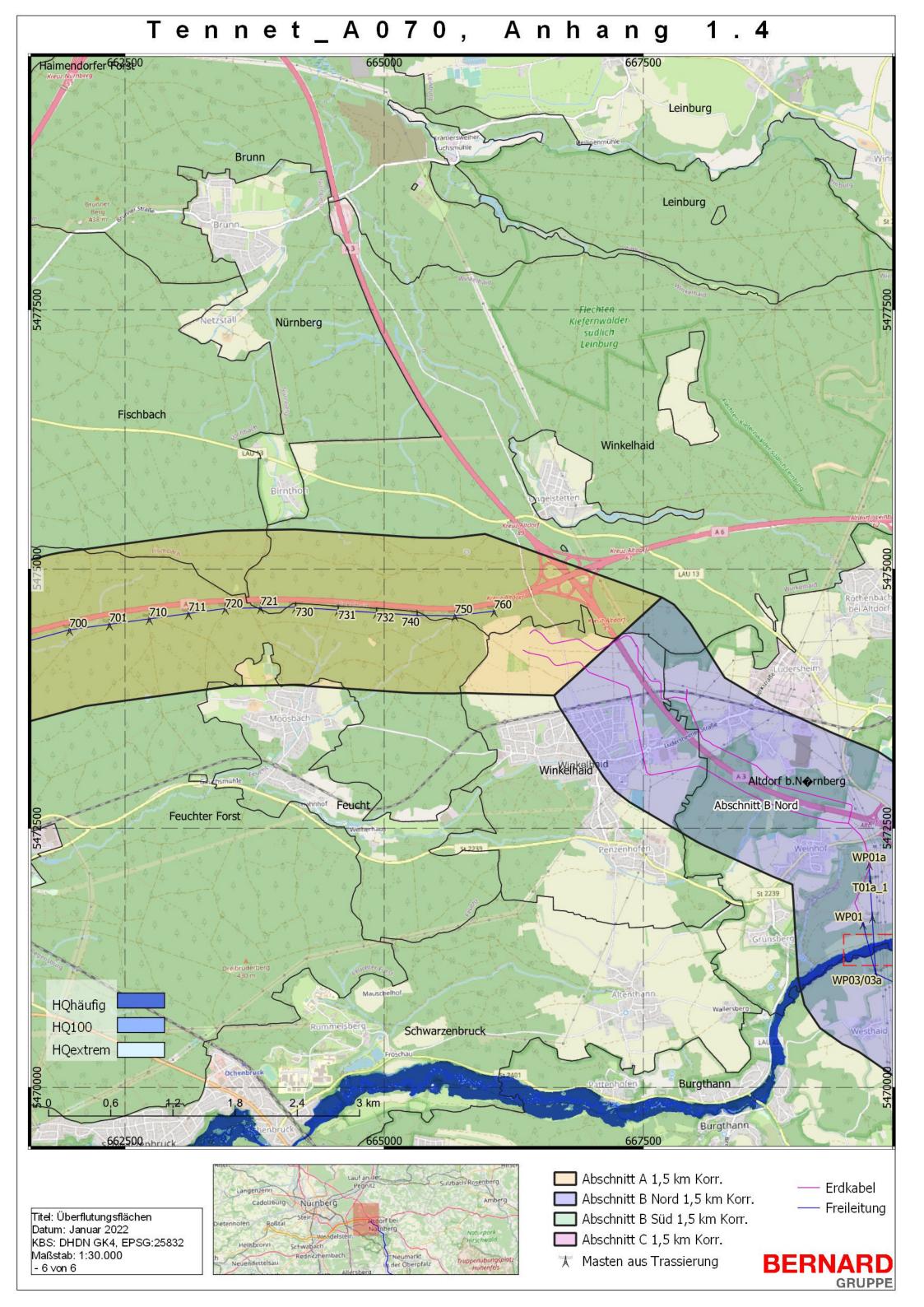

Tennet_A070, Anhang m 28500 640 632 Feucht m 27000 630 621 Forst Kleinschwarzenlohe m 25500 611 610 Abschnitt A 542 540 m 24000 m 19500 33 (91 994 500 m 24000 501 502 503 510 90 520 41 m 22500 Wendelstein EWS 200m Korridor EWS 400m Korridor EWS 600m Korridor EWS >600m Korridor Bohrung 200m Korridor Bohrung 400m Korridor Bohrung 600m Korridor Bohrung >600m Korridor Abschnitt A 1,5 km Korr. Erdkabel Cadolzburg Nürnberg Abschnitt B Nord 1,5 km Korr. — Freileitung Titel: Lage der Bohrungen Abschnitt B Süd 1,5 km Korr. Datum: Januar 2022 Abschnitt C 1,5 km Korr. KBS: DHDN GK4, EPSG:25832 Neuendettelsau Maßstab: 1:30.000 ★ Masten aus Trassierung BERNARD Windsbach Seite:Bereich A - 4 von 6 **GRUPPE**

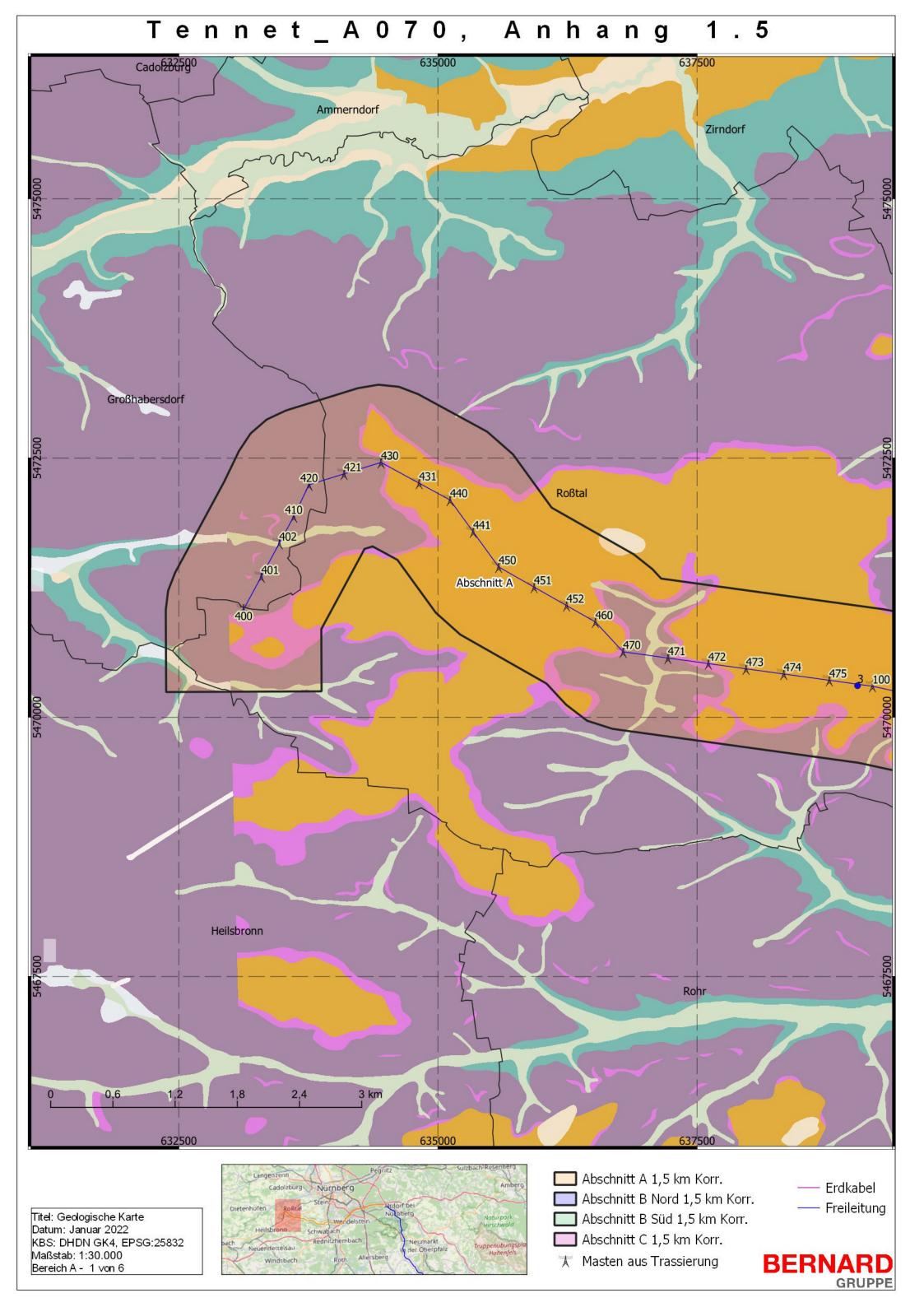

Tennet_A070, Anhang Brunn 691 692 700 m 34500 710 711 720 m 33000 690 137 125 102 126 670 671 672 680 681 Abschnitt A 651 652₉₇ m 30000 m 28500 640 Feuchter Fors 631 m 27000 630 621 620 Forst Kleinschwarzenlohe 🛖 EWS 200m Korridor EWS 400m Korridor EWS 600m Korridor EWS >600m Korridor Schwarzenbruck Wendelstein Bohrung 200m Korridor Bohrung 400m Korridor Bohrung 600m Korridor Bohrung >600m Korridor 2,4 3 km Abschnitt A 1,5 km Korr. — Erdkabel Abschnitt B Nord 1,5 km Korr. Cadolzburg Nurnberg — Freileitung Titel: Lage der Bohrungen Abschnitt B Süd 1,5 km Korr. Datum: Januar 2022 Abschnitt C 1,5 km Korr. KBS: DHDN GK4, EPSG:25832 Maßstab: 1:30.000 Masten aus Trassierung BERNARD Seite:Bereich A - 5 ∨on 6 **GRUPPE**

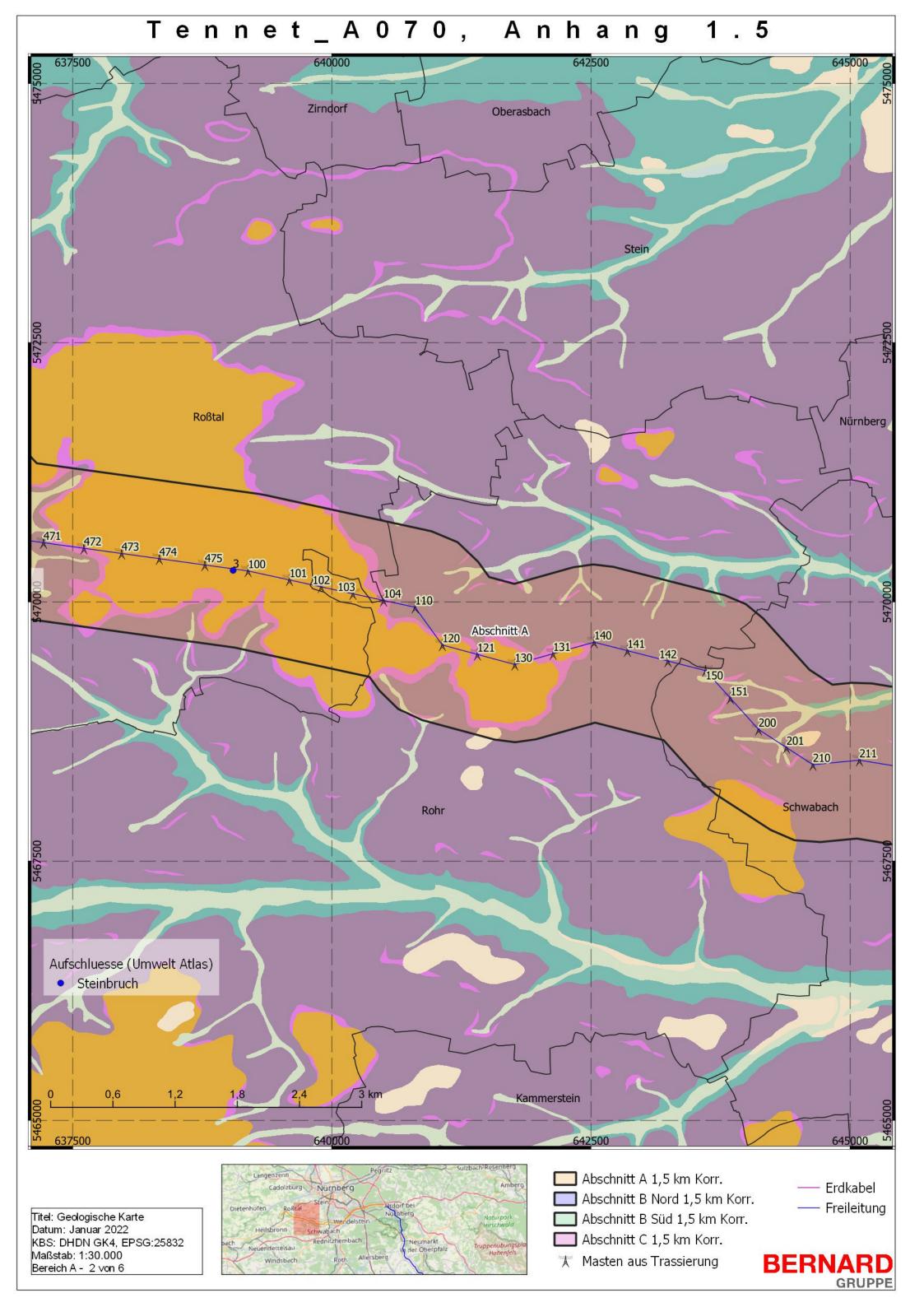

Tennet_A070, Anhang Taimendorfer 467310 Leinburg Brunn Leinburg Nürnberg Fischbach Winkelhaid m 39000 700 m 34500 710 711 720 721 760 732 740 750 730 731 701 m0Winkelhaid tdorf b.Nornberg m 1500 Abschnitt B Nord Feuchter Forst WP01a T01a_1 T01a_2 🛖 EWS 200m Korridor WP01 EWS 400m Korridor EWS 600m Korridor EWS >600m Korridor WP03/03a Bohrung 200m Korridor Bohrung 400m Korridor Schwarzenbruck Bohrung 600m Korridor Bohrung >600m Korridor Burgthann 662500 Abschnitt A 1,5 km Korr. Erdkabel Abschnitt B Nord 1,5 km Korr. Cadolzburg Nürnberg — Freileitung Titel: Lage der Bohrungen Abschnitt B Süd 1,5 km Korr. Datum: Januar 2022 Abschnitt C 1,5 km Korr. KBS: DHDN GK4, EPSG:25832 Maßstab: 1:30.000 **BERNARD** ★ Masten aus Trassierung Neuendettelsau Seite: - 6 ∨on 6 **GRUPPE**

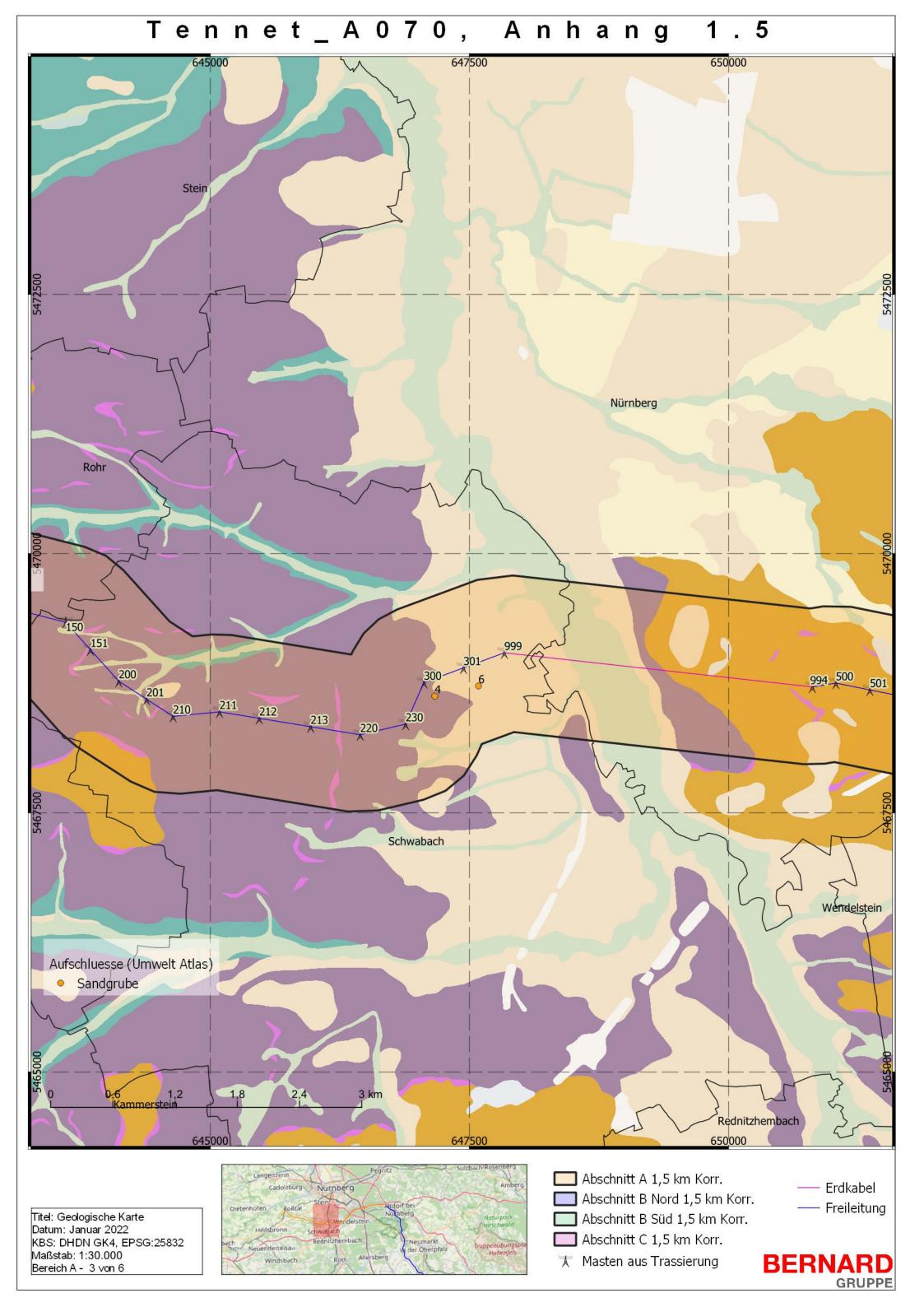


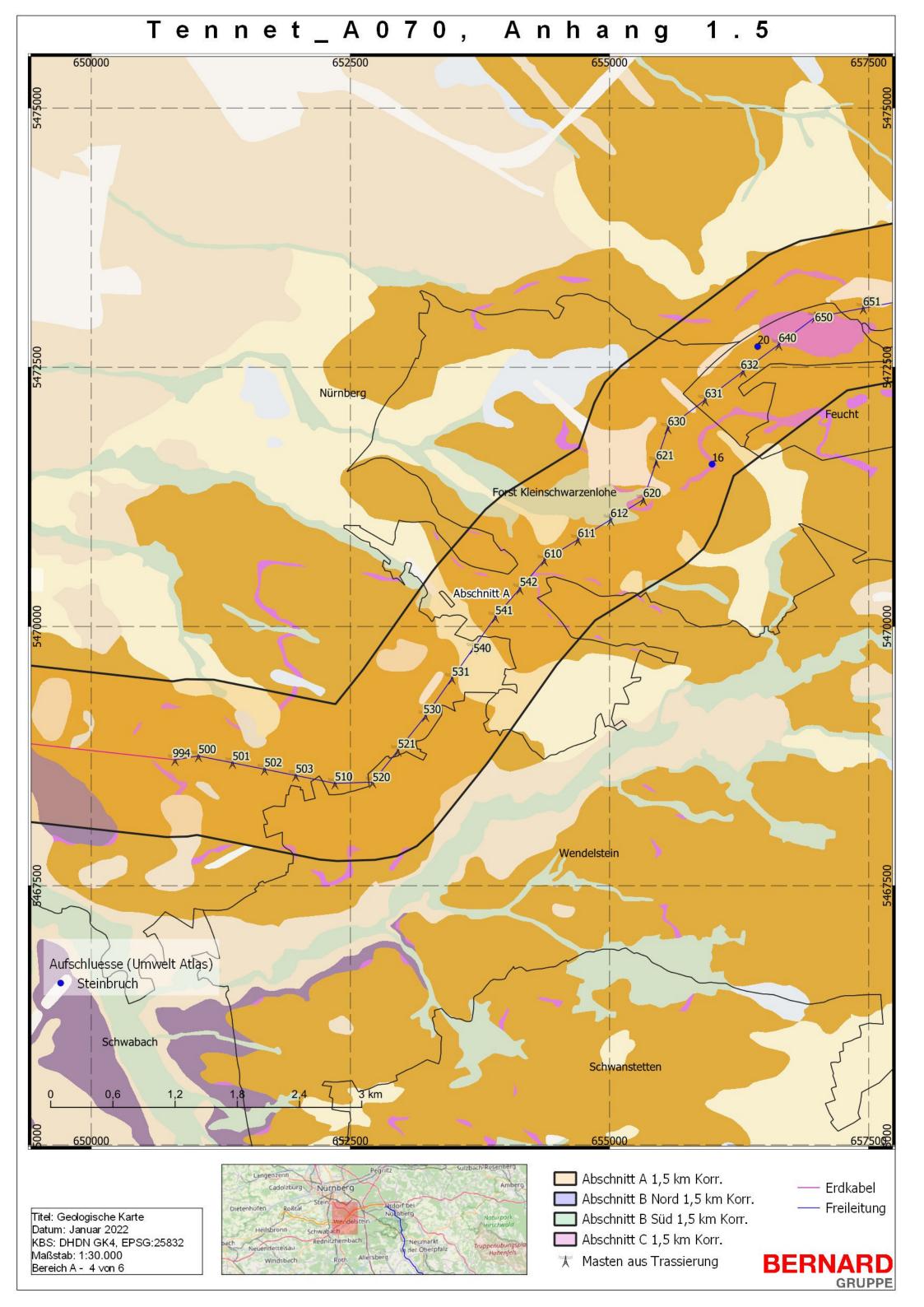

- 1 Planunterlagen
 - 1.1 Übersichtslageplan
 - 1.2 Digitales Geländemodell, Topographie, Maßstab 1 : 60.000
 - 1.3 Lage der Bohrungen, Maßstab 1: 30.000
 - 1.4 Überflutungsflächen, Maßstab 1: 30.000
 - 1.5 Geologische Karte, Maßstab 1: 30.000
 - 1.6 Bodendenkmäler, Altlasten, Maßstab 1: 30.000
 - 1.7 Georisiken, Maßstab 1: 30.000
 - 1.8 Hinweiskarte hohe Grundwasserstände, Maßstab 1: 30.000
 - 1.9 Luftbild mit Fotos, 1: 30.000
 - 1.10 Baugrundkarte mit Klassifizierung Masten nach Beeinträchtigung, Maßstab 1: 30.000
- 2 Fotodokumentation der Trassenbegehung
- 3 Archivbohrungen
 - 3.1 Liste der Archivbohrungen
 - 3.2 Bohrprofile Korridor 200m
 - 3.3 Bohrprofile Korridor 400m
 - 3.4 Bohrprofile Korridor 600m
 - 3.5 Bohrprofile Korridor >600m
- 4 Klassifizierung der Masten

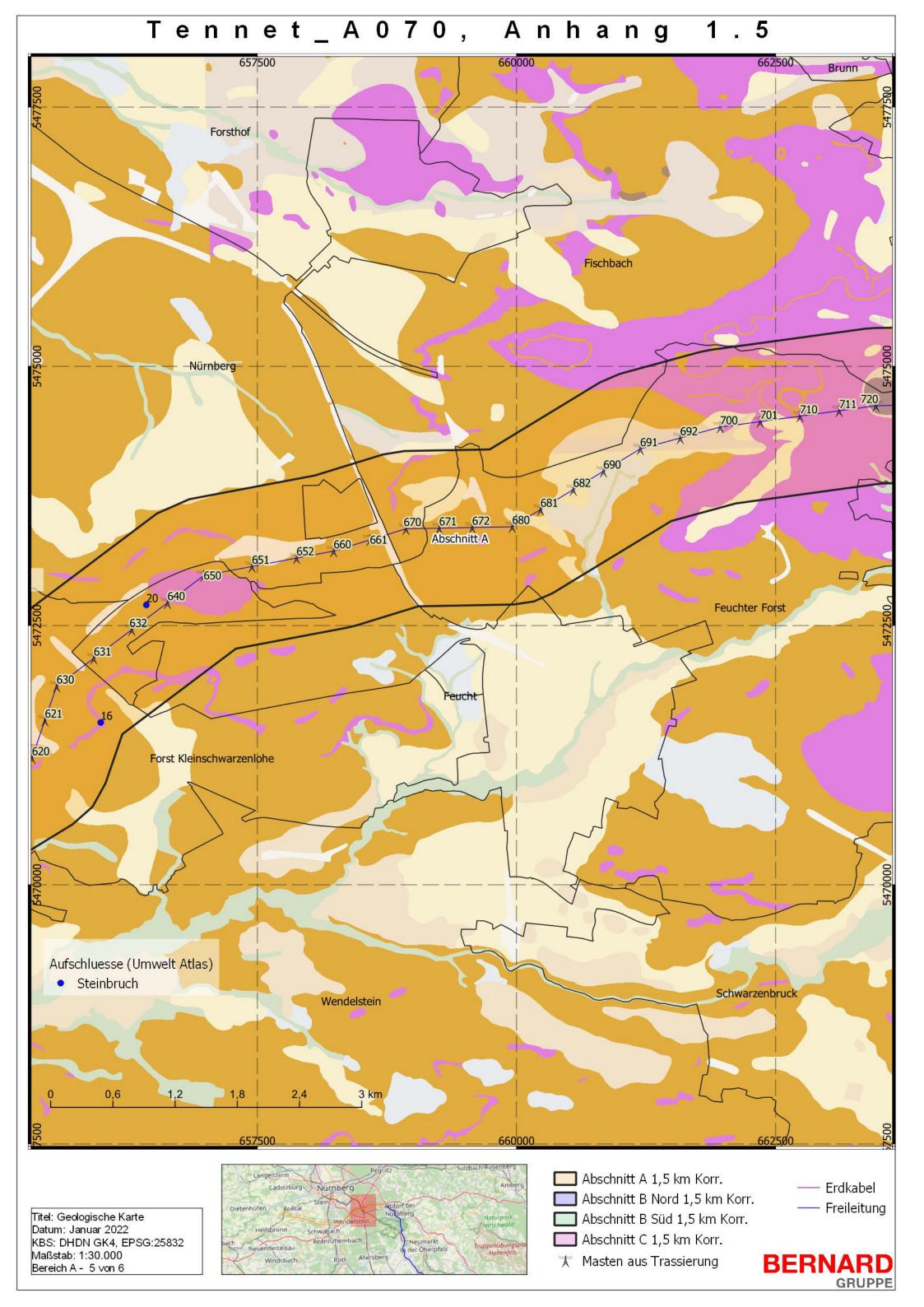


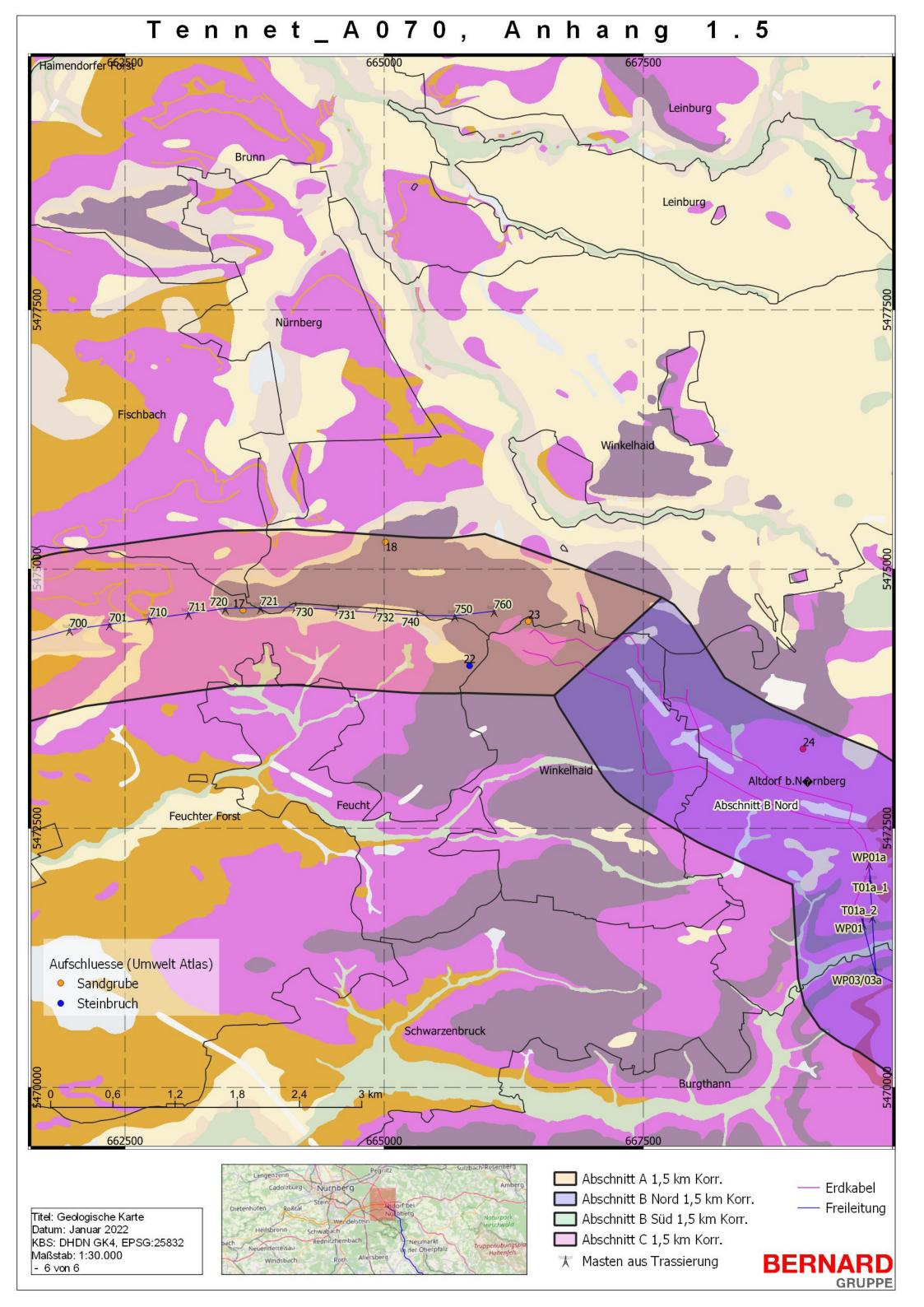


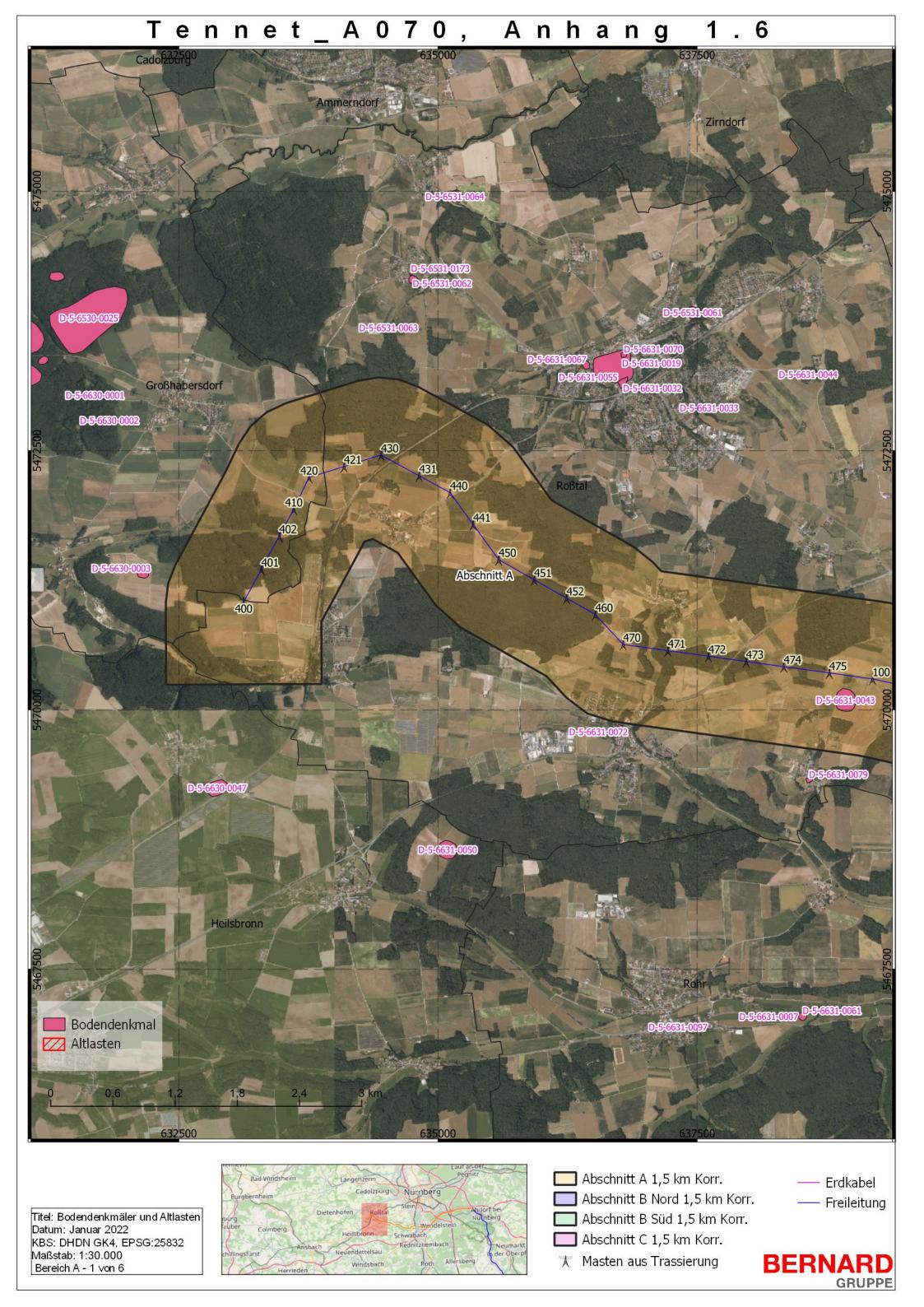


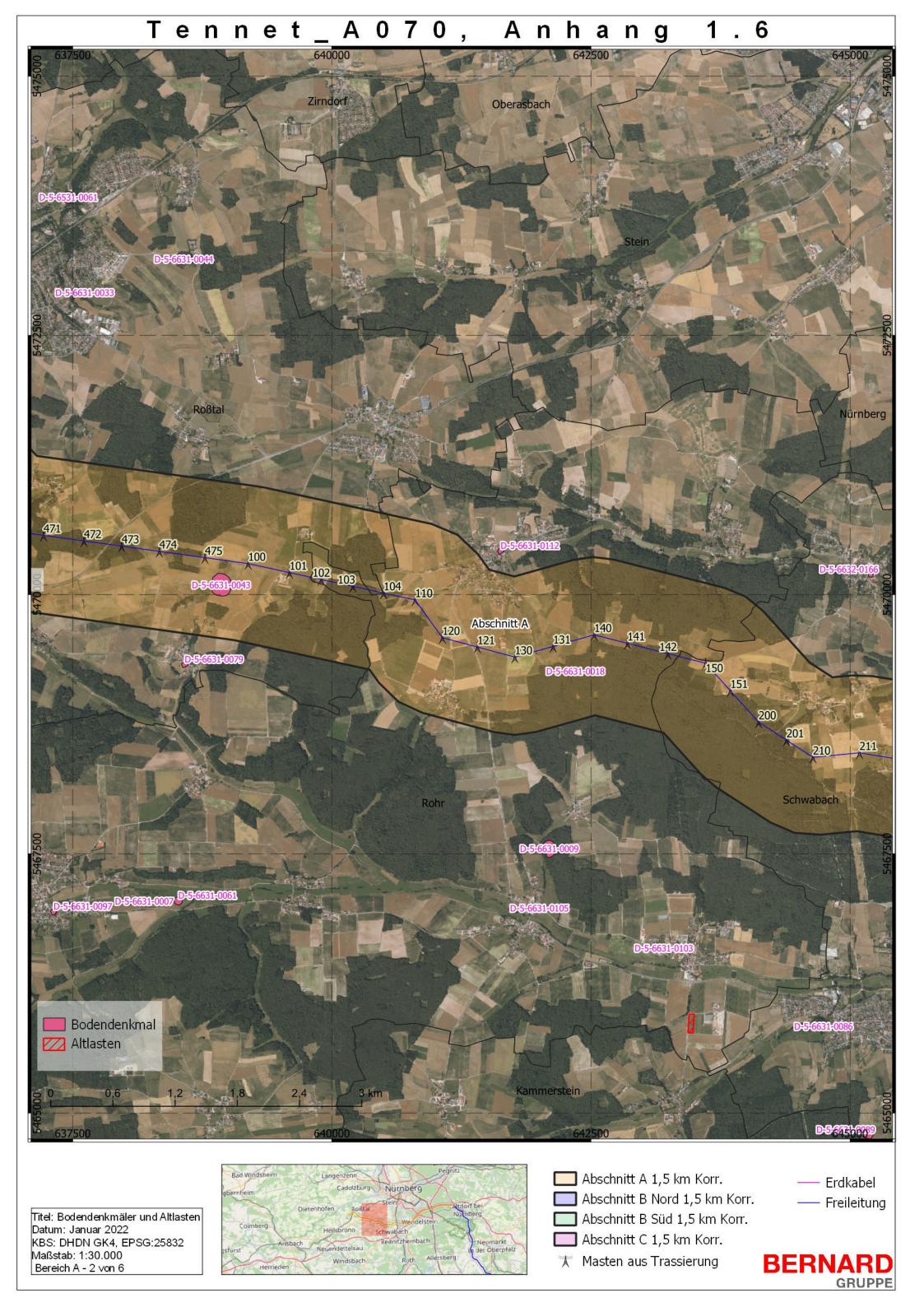

- 1 Planunterlagen
 - 1.1 Übersichtslageplan
 - 1.2 Digitales Geländemodell, Topographie, Maßstab 1 : 60.000
 - 1.3 Lage der Bohrungen, Maßstab 1: 30.000
 - 1.4 Überflutungsflächen, Maßstab 1: 30.000
 - 1.5 Geologische Karte, Maßstab 1: 30.000
 - 1.6 Bodendenkmäler, Altlasten, Maßstab 1: 30.000
 - 1.7 Georisiken, Maßstab 1: 30.000
 - 1.8 Hinweiskarte hohe Grundwasserstände, Maßstab 1: 30.000
 - 1.9 Luftbild mit Fotos, 1: 30.000
 - 1.10 Baugrundkarte mit Klassifizierung Masten nach Beeinträchtigung, Maßstab 1: 30.000
- 2 Fotodokumentation der Trassenbegehung
- 3 Archivbohrungen
 - 3.1 Liste der Archivbohrungen
 - 3.2 Bohrprofile Korridor 200m
 - 3.3 Bohrprofile Korridor 400m
 - 3.4 Bohrprofile Korridor 600m
 - 3.5 Bohrprofile Korridor >600m
- 4 Klassifizierung der Masten

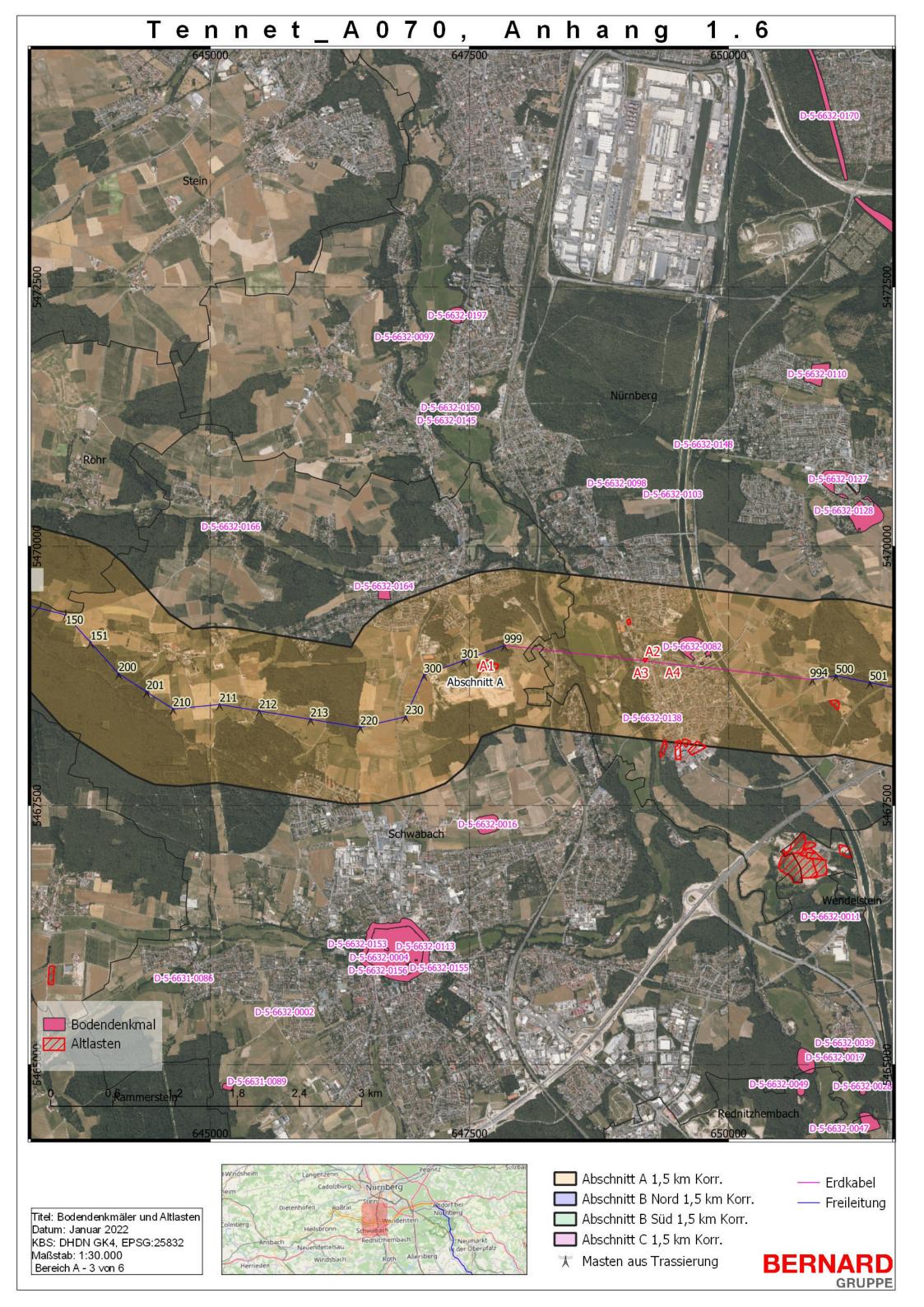

Legende zur Ingenieurgeologischen Karte (Abschnitt A) (Digitale Ingenieurgeologische Karte von Bayern 1:25.000 (dIGK25)) https://www.lfu.bayern.de/gdi/wms/geologie/digk25?

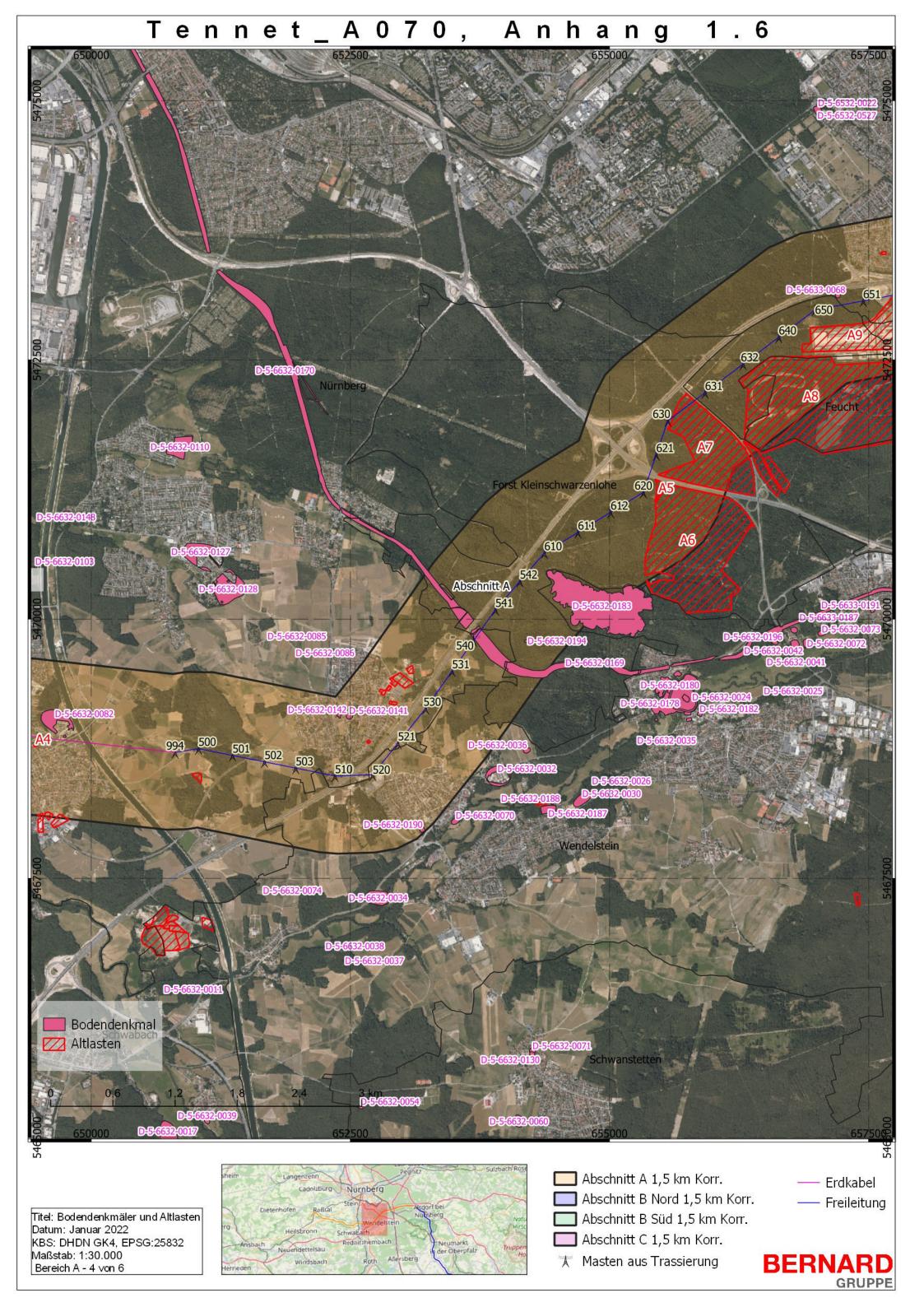

Symbol	Kurzbez.	Baugrundtyp	Beispiele für Gesteine	Mögliche Bodengruppen	Mittlere Tragfähigkeit	Allgem. Baugrundhinweis
		Lockergesteine bindig				
	L,bn	Bindige Lockergesteine wechselnd mit nichtbindigen Lockergesteinen	Ton, Schluff, Sand, Kies, teils kleinräumig wechselnd: undifferenzierte tertiäre/quartä fluviatile, glaziale oder glazifluviatile Ablagerungen	rGE, GW, SE, SW, GU, SU, UL, UM, UA, TL, TM, TA	wechselhaft, mittel, teils hoch	Oft kleinräumig wechselhafte Gesteinsausbildung, oft wasserempfindlich (wechselnde Konsistenz, Schrumpfen/Quellen), z. T. Staunässe möglich, oft frostempfindlich, oft setzungsempfindlich, z. T. eingeschränkt befahrba
		Lockergesteine nicht bindig				
	L,nl	Nichtbindige Lockergesteine, locker gelagert		SU, teils OK, OH, HZ, HN, F	mittel, teils gering	Z. T. setzungsempfindlich, z. T. mässig frostempfindlich, z. T. schwer verdichtbar, meist besondere Gründungsmassnahmen erforderlich, z. T. eingeschränkt befahrbar
	L,nd	Nichtbindige Lockergesteine, mitteldicht bis dicht gelagert	Kies, Sand: Fluss-/Schmelzwasserablagerungen, Flusssande, nichtbindige Moränenablagerungen, pyroklastische Ablagerungen	GE, GW, GI, SE, SW, SI, GU, GT, SU	mittel bis hoch	Lokal z. T. mässig frostempfindlich
	L,ne	Nichtbindige, enggestufte Lockergesteine, locker gelagert	Sand, teils schluffig: Dünen-, Flugsand	SE	mittel	Z. T. setzungsempfindlich, schwer verdichtbar, meist besondere Gründungsmassnahmen erforderlich, z. T. eingeschränkt befahrbar
		Lockergesteine organisch				
	L,o	Organische und biogene Lockergesteine	Torf, Anmoor	OH, OT, OK, HZ, HN, F	sehr gering	Setzungsempfindlich, oft betonangreifendes Wasser, oft hoher Grundwasserstand, besondere Gründungsmassnahmen erforderlich, meis eingeschränkt befahrbar
		Lockergesteine künstlich (anthropogene)				•
	L,a	Künstliche Ab- und Umlagerungen	Wechselhaft, Fremdstoffe oder natürliche Bodenarten, wechselhaft: Auffüllungen, Müll, Bauschutt, Bergbau-Halden	A	wechselhaft, oft gering	Sehr variable Ausbildung, oft besondere Gründungsmassnahmen erforderlich, z. T. eingeschränkt befahrbar
		Festgesteine				
	F,mhi	Mäßig harte Festgesteine, häufig mit Inhomogenitäten	Sandstein, Kalkstein mit Zwischenlagen oder Einschaltungen von Ton-/Schluffstein, Mergelstein oder harten Festgesteinen	-	hoch bis sehr hoch	Häufig verwitterungsempfindlich, z. T. Setzungsunterschiede möglich (qu etwa 12,5 bis 50 MPa in unverwittertem Zustand)
		Veränderlich feste Gesteine				
	V,V	Veränderlich feste Gesteine	Ton-/Schluffstein, Mergelstein	-	mittel bis hoch	Oberflächennah oft stark verwittert, dann wasserempfindlich, setzungs- /hebungsempfindlich, Staunässe möglich, z. T. besondere Gründungsmassnahmen erforderlich, z. T. eingeschränkt befahrbar
	V, FV	Überwiegend Festgesteine wechselnd mit veränderlich festen Gesteinen	Kalk-/Dolomitstein, Sandstein, Grauwacke, Konglomerat, lagenweise Ton-/Schluffstein, Mergelstein		hoch, teils mittel	Oberflächennah z. T. stark verwittert, dann wasserempfindlich, z. T. setzungs-/hebungsempfindlich, z. T. Staunässe möglich, z. T. besondere Gründungsmassnahmen erforderlich, z. T. eingeschränkt befahrbar
	V,VI	Veränderlich feste Gesteine mit ausgeprägt wasserlöslichen Gesteinen, teils mit Festgesteine	Ton-/Schluffstein, Mergelstein, mit Einlagerungen von Gips, Anhydrit oder Steinsalz, teils auch Kalk- oder Sandstein	-	mittel bis hoch	Oberflächennah oft stark verwittert, dann wasserempfindlich, setzungs- /hebungsempfindlich, großräumige Senkungen möglich, Staunässe möglich, betonangreifendes Wasser möglich, z. T. besondere Gründungsmaßnahmen erforderlich, z. T. eingeschränkt befahrbar

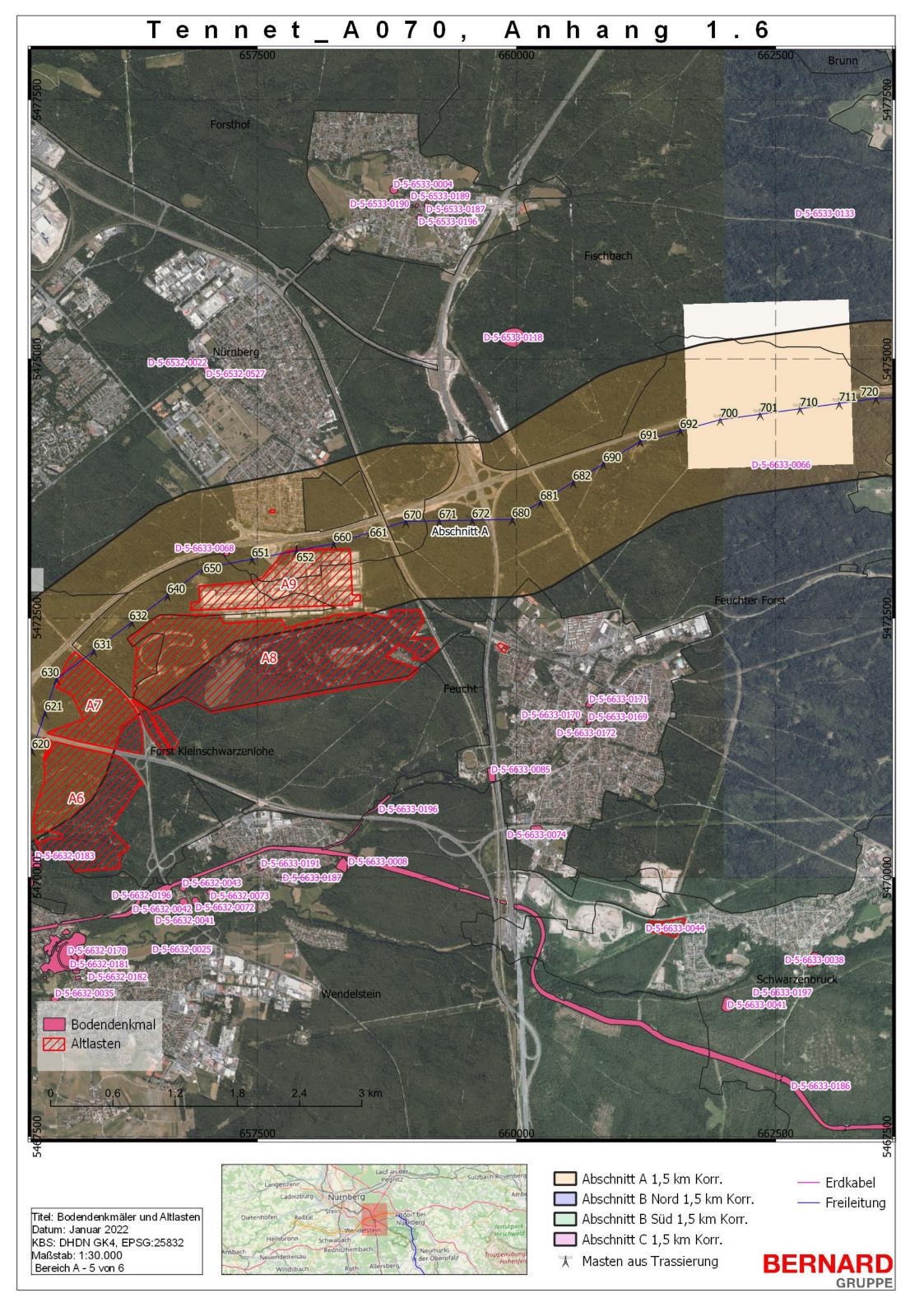


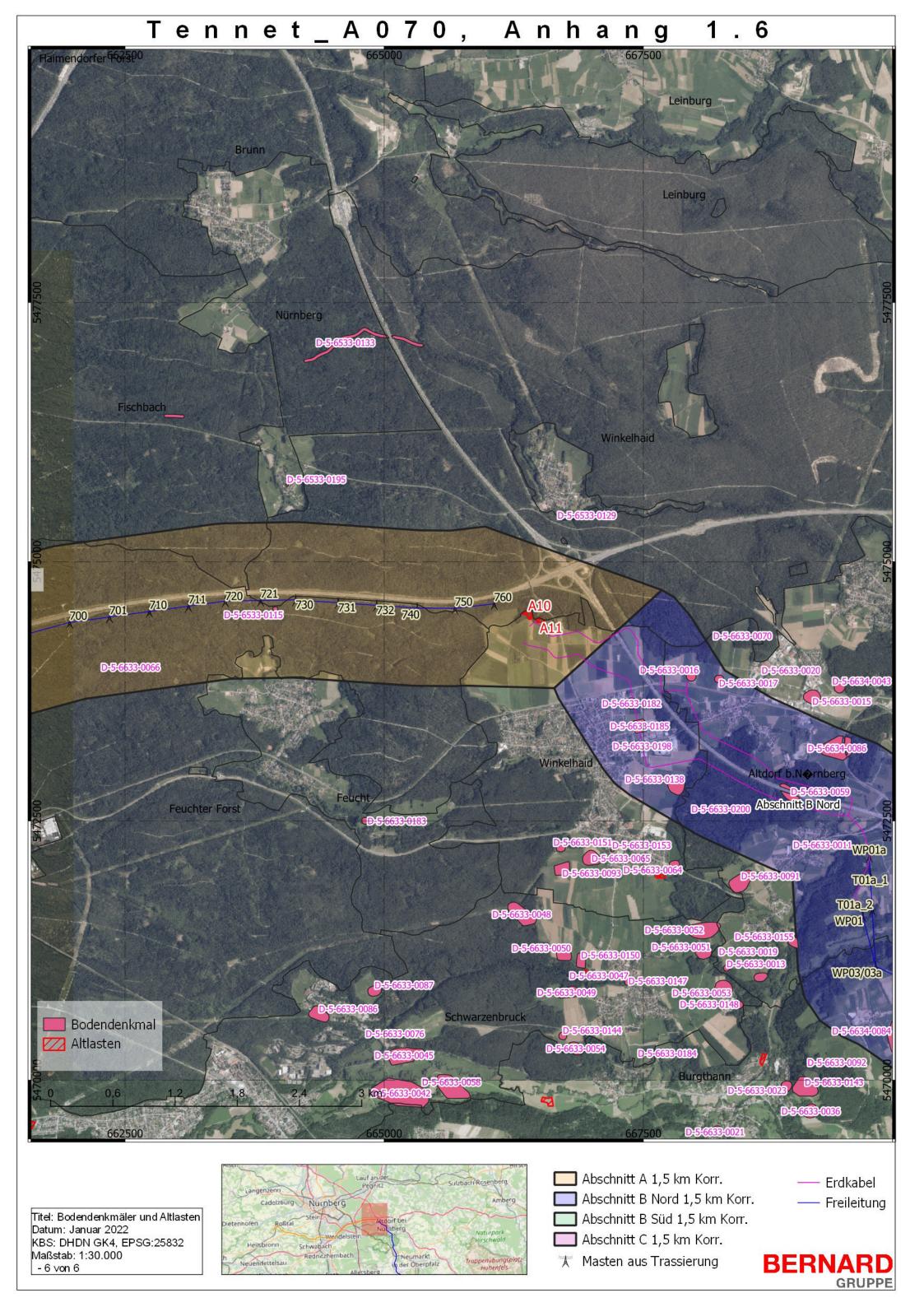


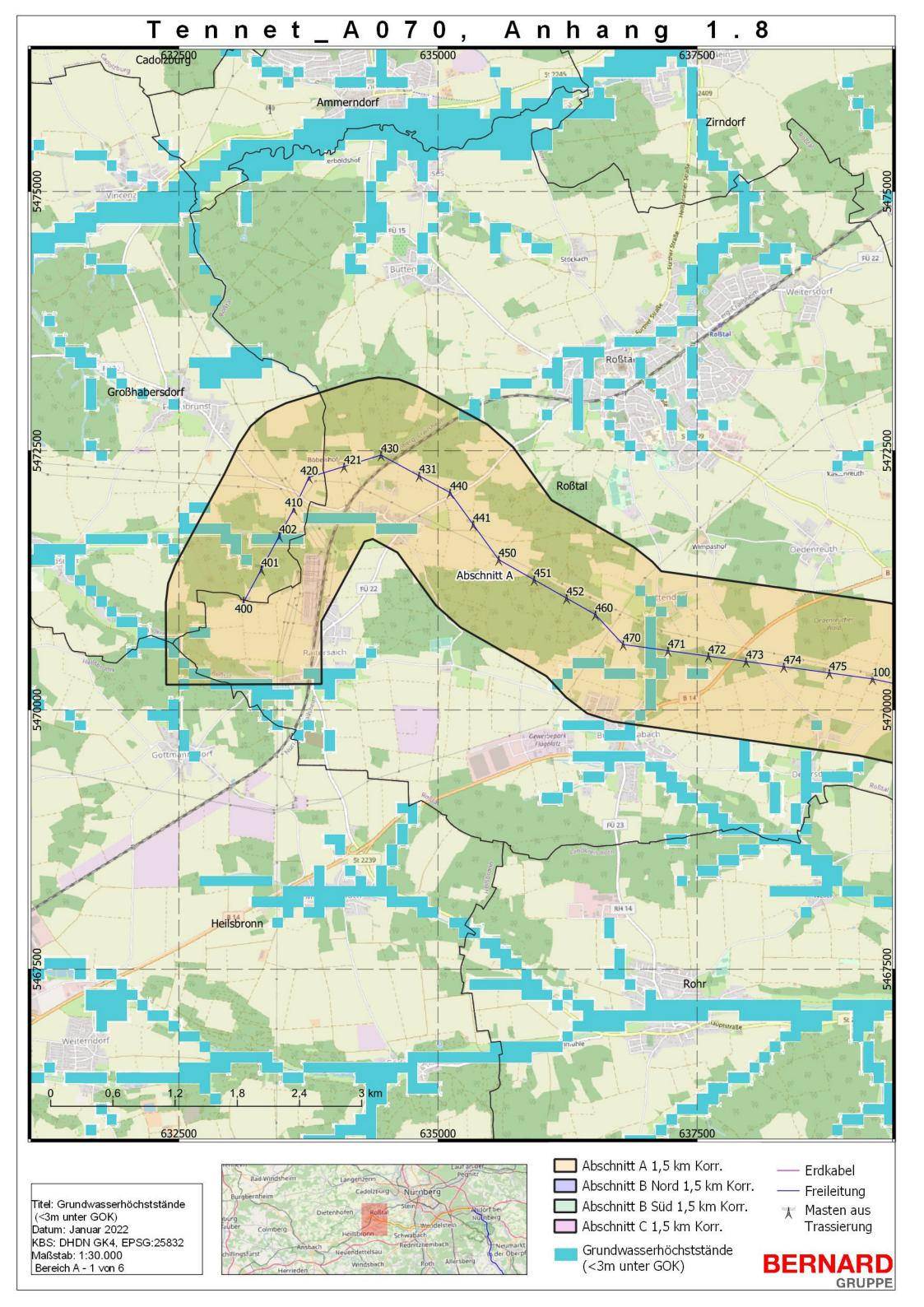


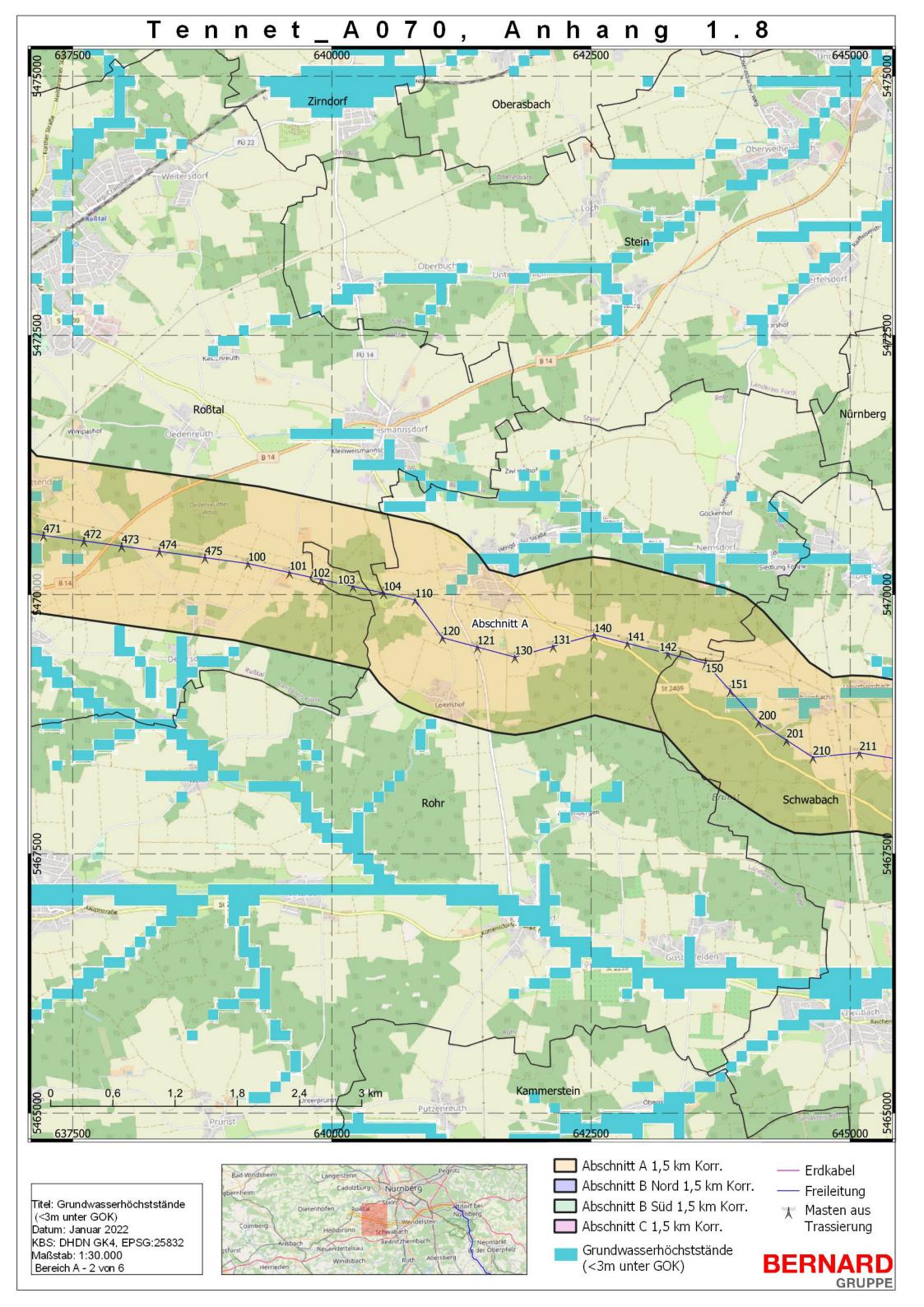




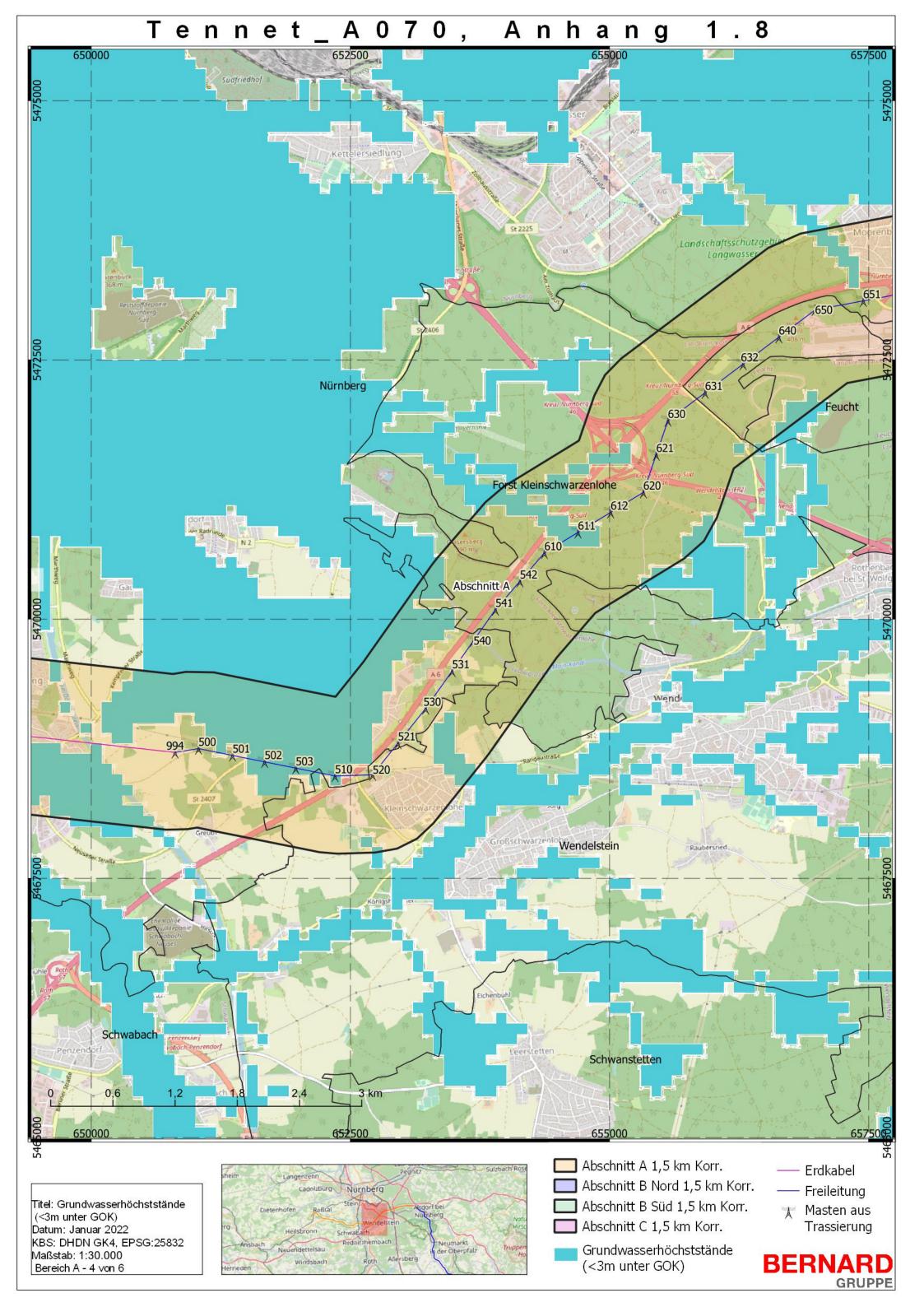

- 1 Planunterlagen
 - 1.1 Übersichtslageplan
 - 1.2 Digitales Geländemodell, Topographie, Maßstab 1 : 60.000
 - 1.3 Lage der Bohrungen, Maßstab 1: 30.000
 - 1.4 Überflutungsflächen, Maßstab 1: 30.000
 - 1.5 Geologische Karte, Maßstab 1: 30.000
 - 1.6 Bodendenkmäler, Altlasten, Maßstab 1: 30.000
 - 1.7 Georisiken, Maßstab 1: 30.000
 - 1.8 Hinweiskarte hohe Grundwasserstände, Maßstab 1: 30.000
 - 1.9 Luftbild mit Fotos, 1: 30.000
 - 1.10 Baugrundkarte mit Klassifizierung Masten nach Beeinträchtigung, Maßstab 1: 30.000
- 2 Fotodokumentation der Trassenbegehung
- 3 Archivbohrungen
 - 3.1 Liste der Archivbohrungen
 - 3.2 Bohrprofile Korridor 200m
 - 3.3 Bohrprofile Korridor 400m
 - 3.4 Bohrprofile Korridor 600m
 - 3.5 Bohrprofile Korridor >600m
- 4 Klassifizierung der Masten

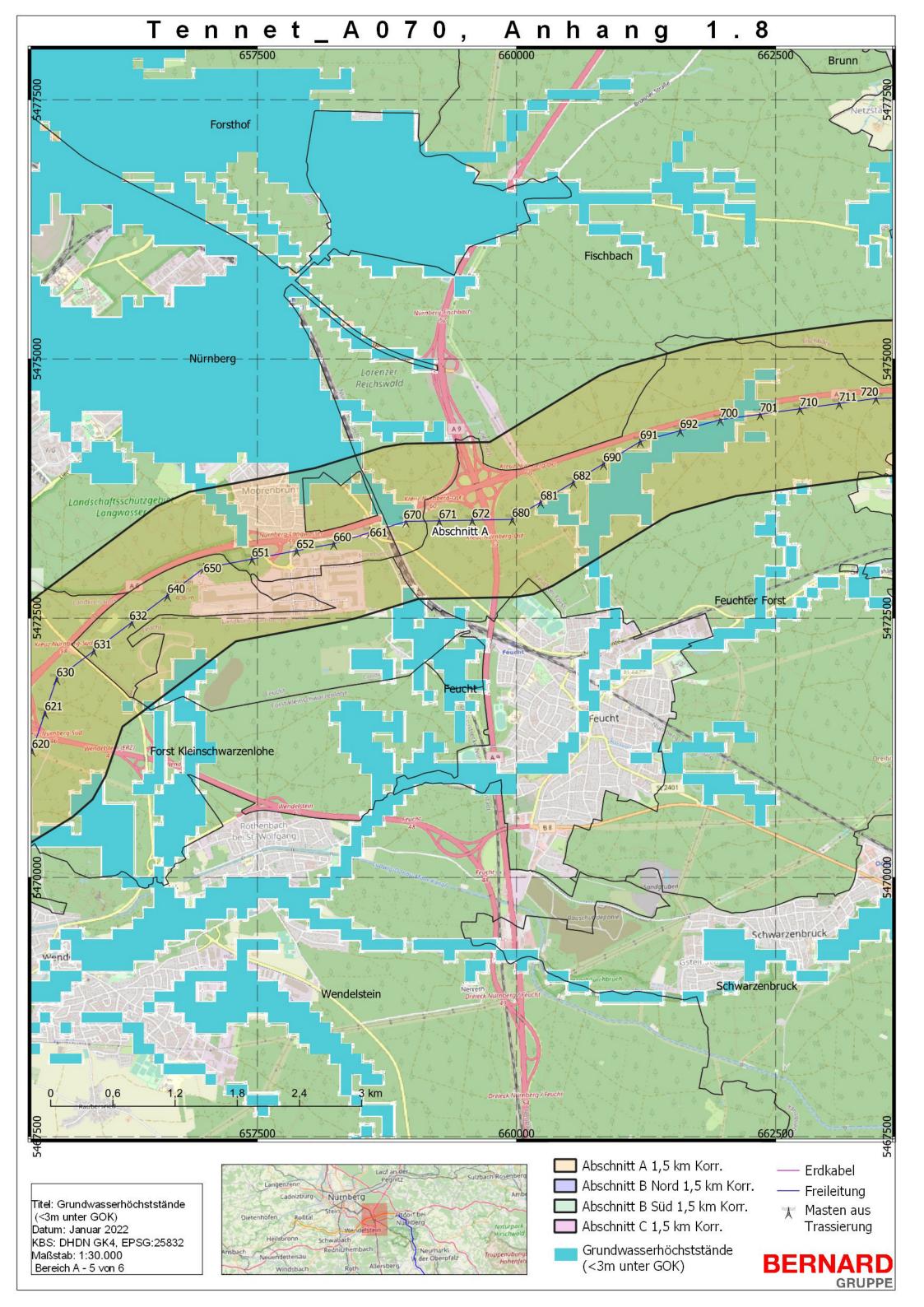


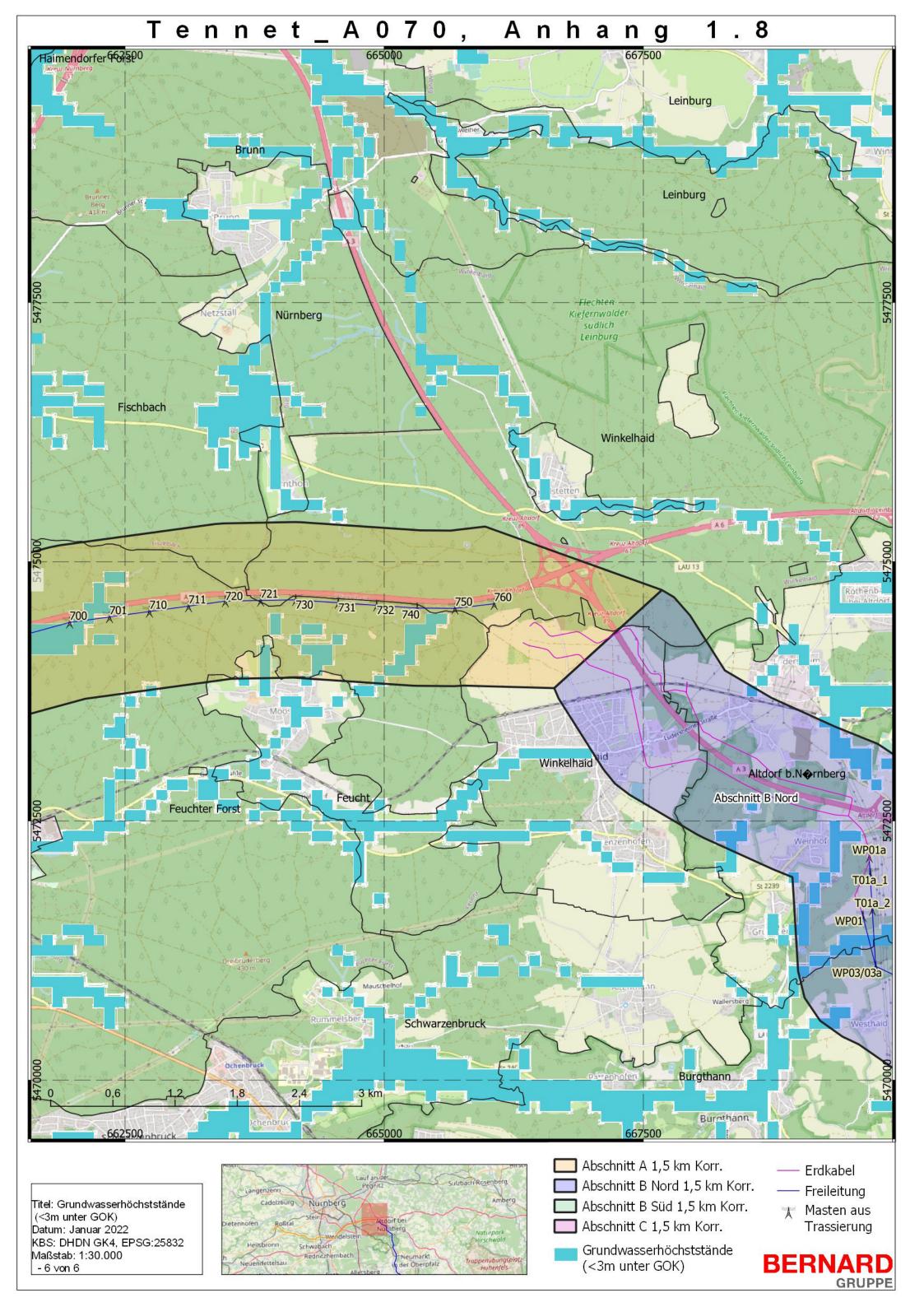


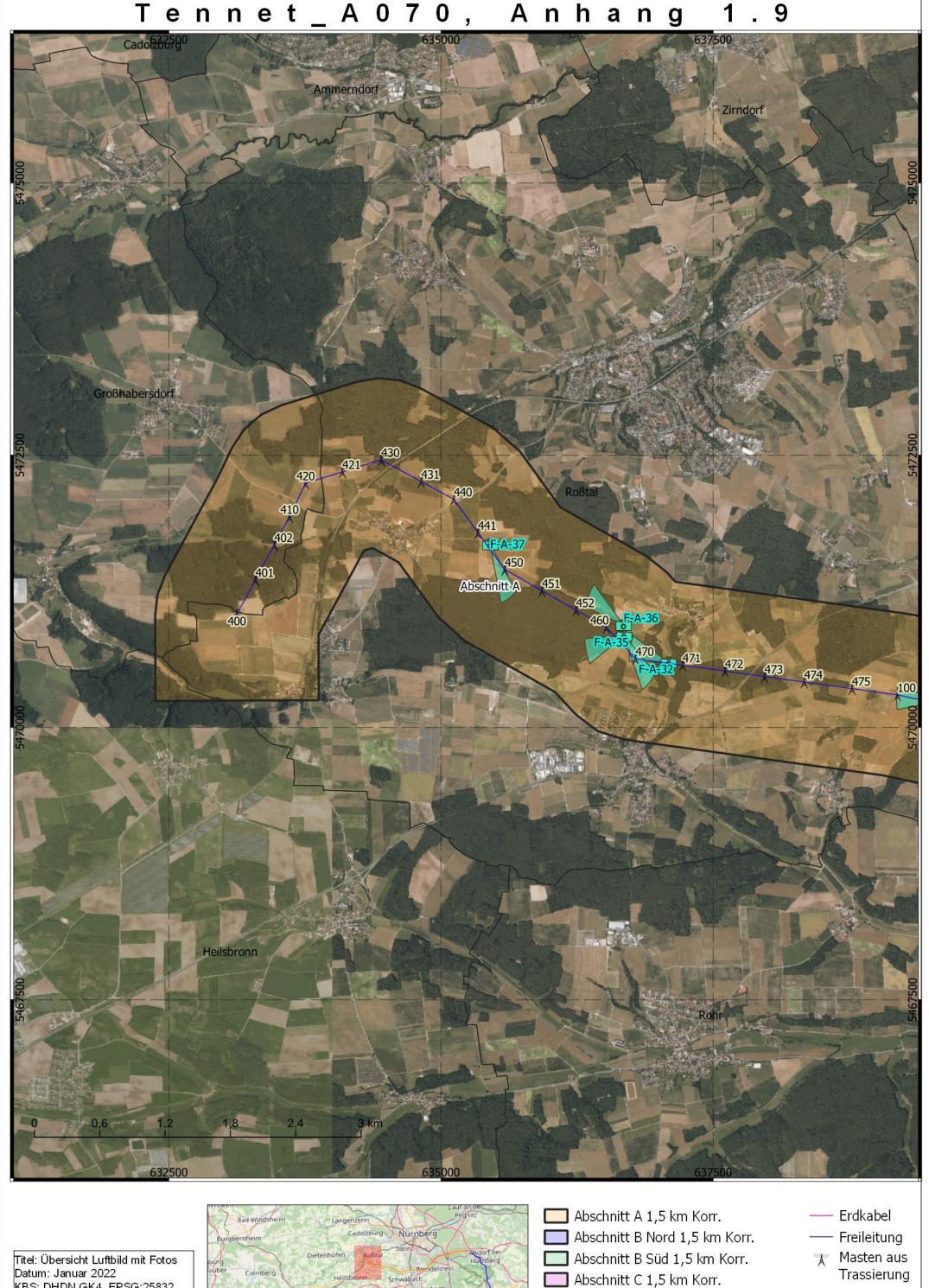

- 1 Planunterlagen
 - 1.1 Übersichtslageplan
 - 1.2 Digitales Geländemodell, Topographie, Maßstab 1 : 60.000
 - 1.3 Lage der Bohrungen, Maßstab 1: 30.000
 - 1.4 Überflutungsflächen, Maßstab 1: 30.000
 - 1.5 Geologische Karte, Maßstab 1: 30.000
 - 1.6 Bodendenkmäler, Altlasten, Maßstab 1: 30.000
 - 1.7 Georisiken, Maßstab 1: 30.000
 - 1.8 Hinweiskarte hohe Grundwasserstände, Maßstab 1: 30.000
 - 1.9 Luftbild mit Fotos, 1: 30.000
 - 1.10 Baugrundkarte mit Klassifizierung Masten nach Beeinträchtigung, Maßstab 1: 30.000
- 2 Fotodokumentation der Trassenbegehung
- 3 Archivbohrungen
 - 3.1 Liste der Archivbohrungen
 - 3.2 Bohrprofile Korridor 200m
 - 3.3 Bohrprofile Korridor 400m
 - 3.4 Bohrprofile Korridor 600m
 - 3.5 Bohrprofile Korridor >600m
- 4 Klassifizierung der Masten

KEINE GEORISIKEN VORHANDEN

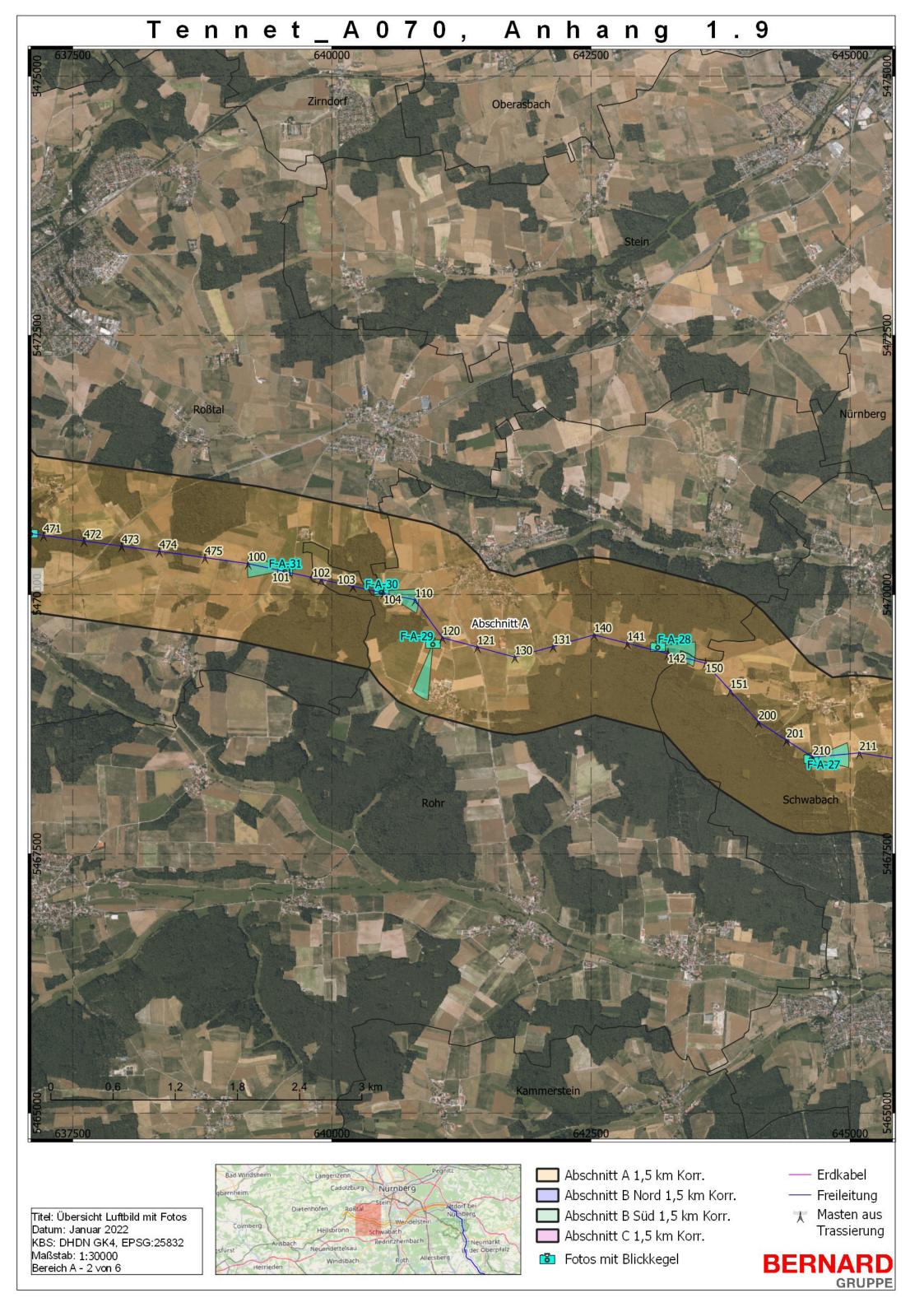



- 1 Planunterlagen
 - 1.1 Übersichtslageplan
 - 1.2 Digitales Geländemodell, Topographie, Maßstab 1 : 60.000
 - 1.3 Lage der Bohrungen, Maßstab 1: 30.000
 - 1.4 Überflutungsflächen, Maßstab 1: 30.000
 - 1.5 Geologische Karte, Maßstab 1: 30.000
 - 1.6 Bodendenkmäler, Altlasten, Maßstab 1: 30.000
 - 1.7 Georisiken, Maßstab 1: 30.000
 - 1.8 Hinweiskarte hohe Grundwasserstände, Maßstab 1: 30.000
 - 1.9 Luftbild mit Fotos, 1: 30.000
 - 1.10 Baugrundkarte mit Klassifizierung Masten nach Beeinträchtigung, Maßstab 1: 30.000
- 2 Fotodokumentation der Trassenbegehung
- 3 Archivbohrungen
 - 3.1 Liste der Archivbohrungen
 - 3.2 Bohrprofile Korridor 200m
 - 3.3 Bohrprofile Korridor 400m
 - 3.4 Bohrprofile Korridor 600m
 - 3.5 Bohrprofile Korridor >600m
- 4 Klassifizierung der Masten

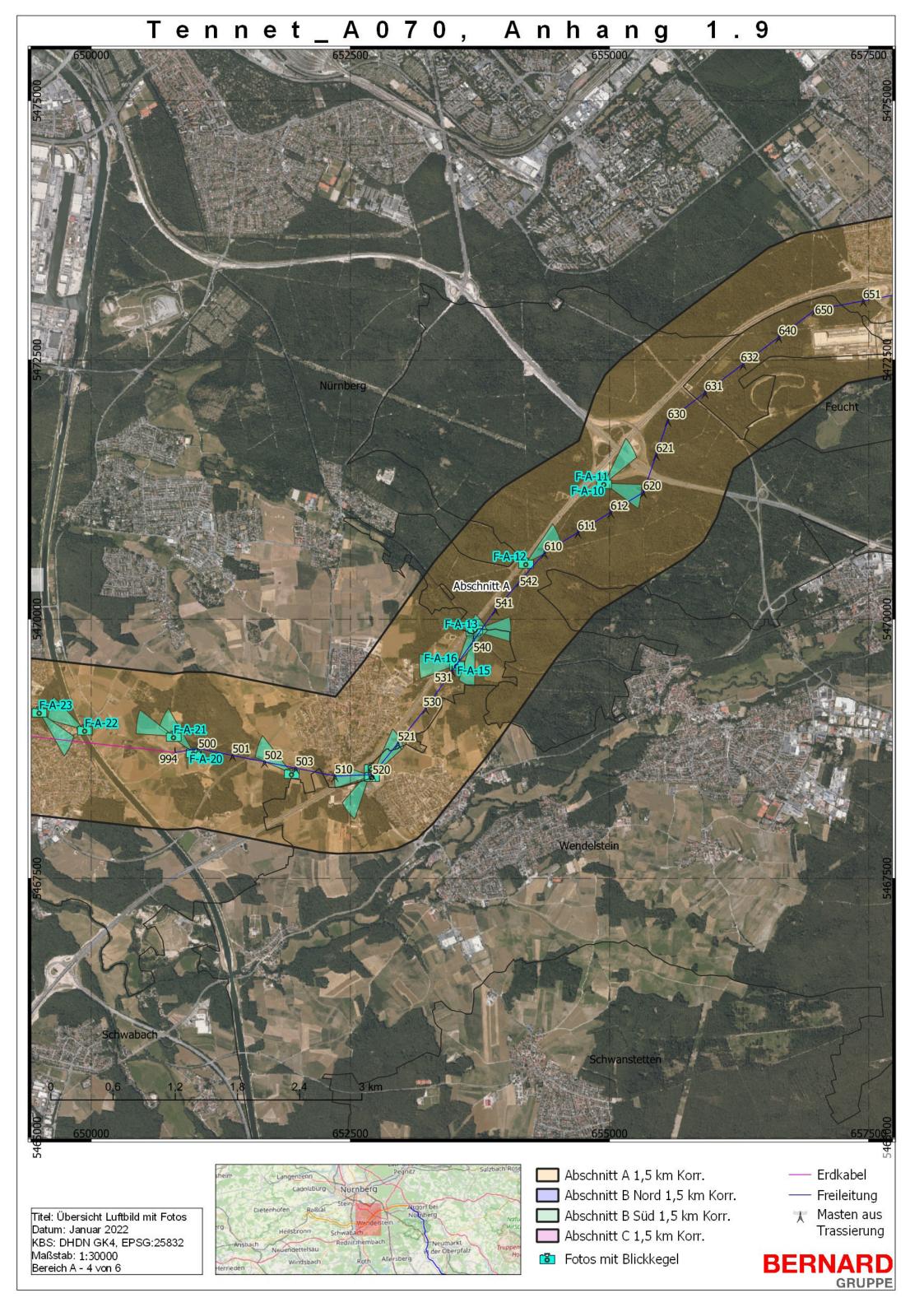




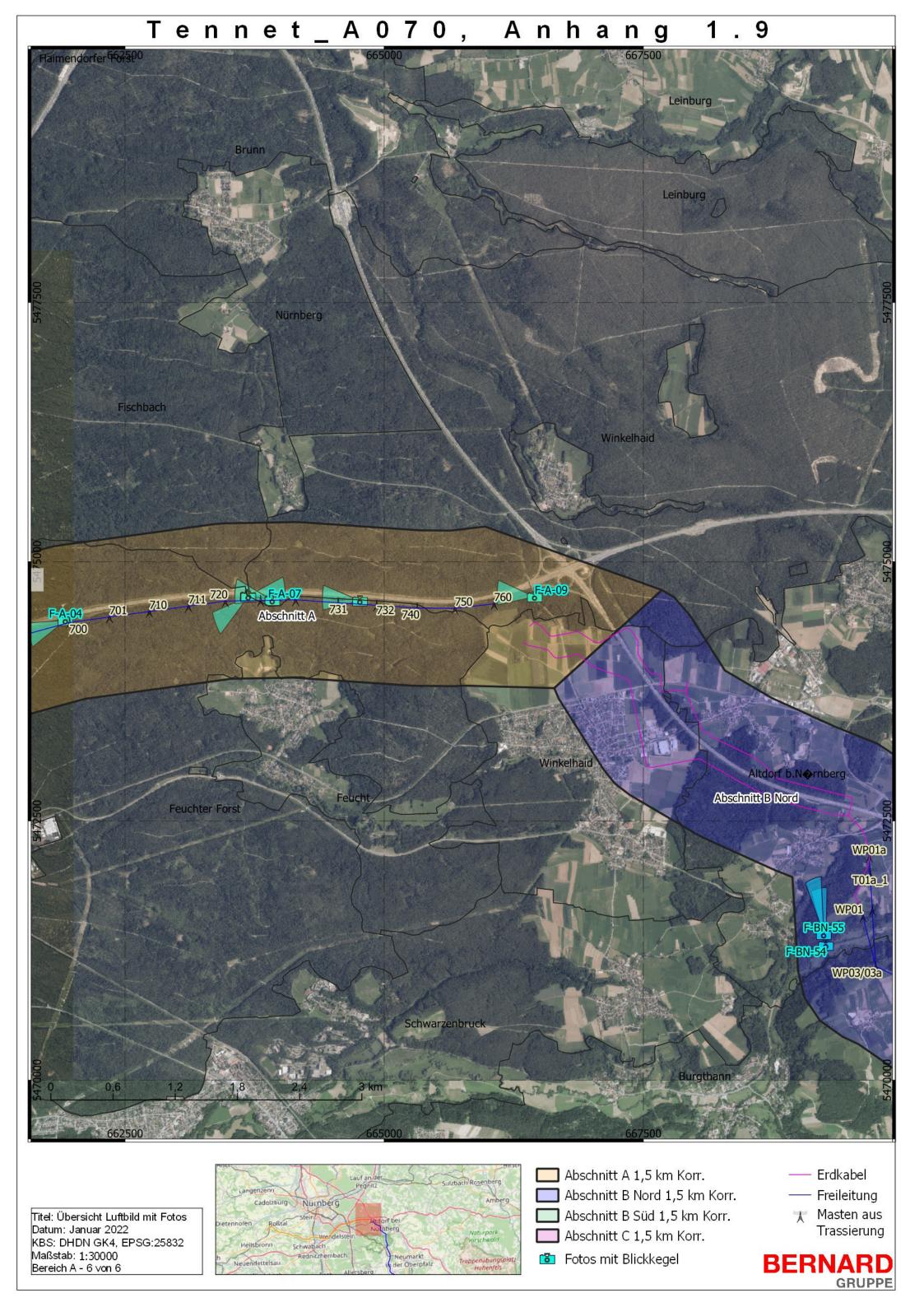
- 1 Planunterlagen
 - 1.1 Übersichtslageplan
 - 1.2 Digitales Geländemodell, Topographie, Maßstab 1: 60.000
 - 1.3 Lage der Bohrungen, Maßstab 1: 30.000
 - 1.4 Überflutungsflächen, Maßstab 1: 30.000
 - 1.5 Geologische Karte, Maßstab 1: 30.000
 - 1.6 Bodendenkmäler, Altlasten, Maßstab 1: 30.000
 - 1.7 Georisiken, Maßstab 1: 30.000
 - 1.8 Hinweiskarte hohe Grundwasserstände, Maßstab 1: 30.000
 - 1.9 Luftbild mit Fotos, 1: 30.000
 - 1.10 Baugrundkarte mit Klassifizierung Masten nach Beeinträchtigung, Maßstab 1: 30.000
- 2 Fotodokumentation der Trassenbegehung
- 3 Archivbohrungen
 - 3.1 Liste der Archivbohrungen
 - 3.2 Bohrprofile Korridor 200m
 - 3.3 Bohrprofile Korridor 400m
 - 3.4 Bohrprofile Korridor 600m
 - 3.5 Bohrprofile Korridor >600m
- 4 Klassifizierung der Masten

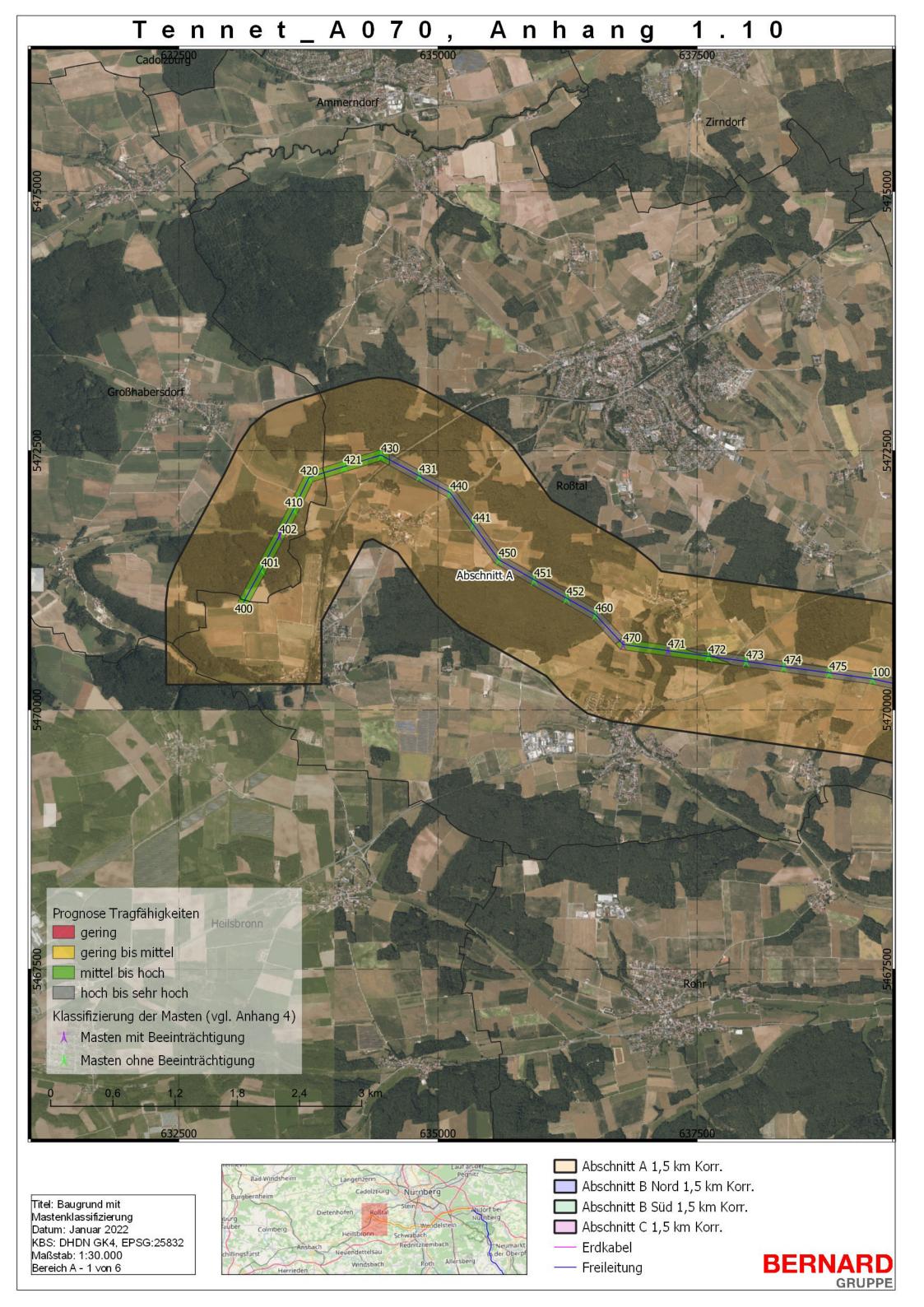

KBS: DHDN GK4, EPSG:25832 Maßstab: 1:30000

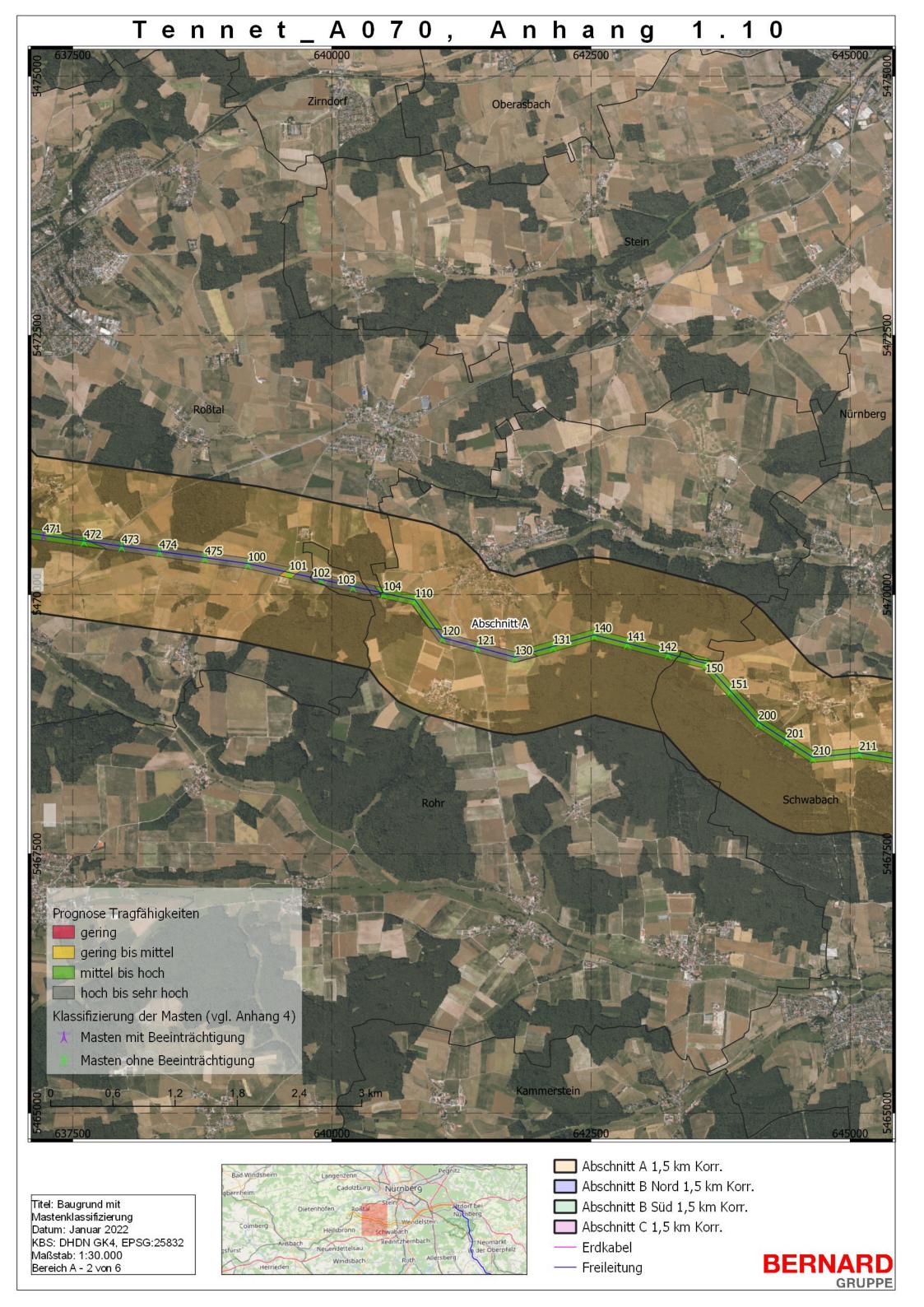
Bereich A - 1 von 6

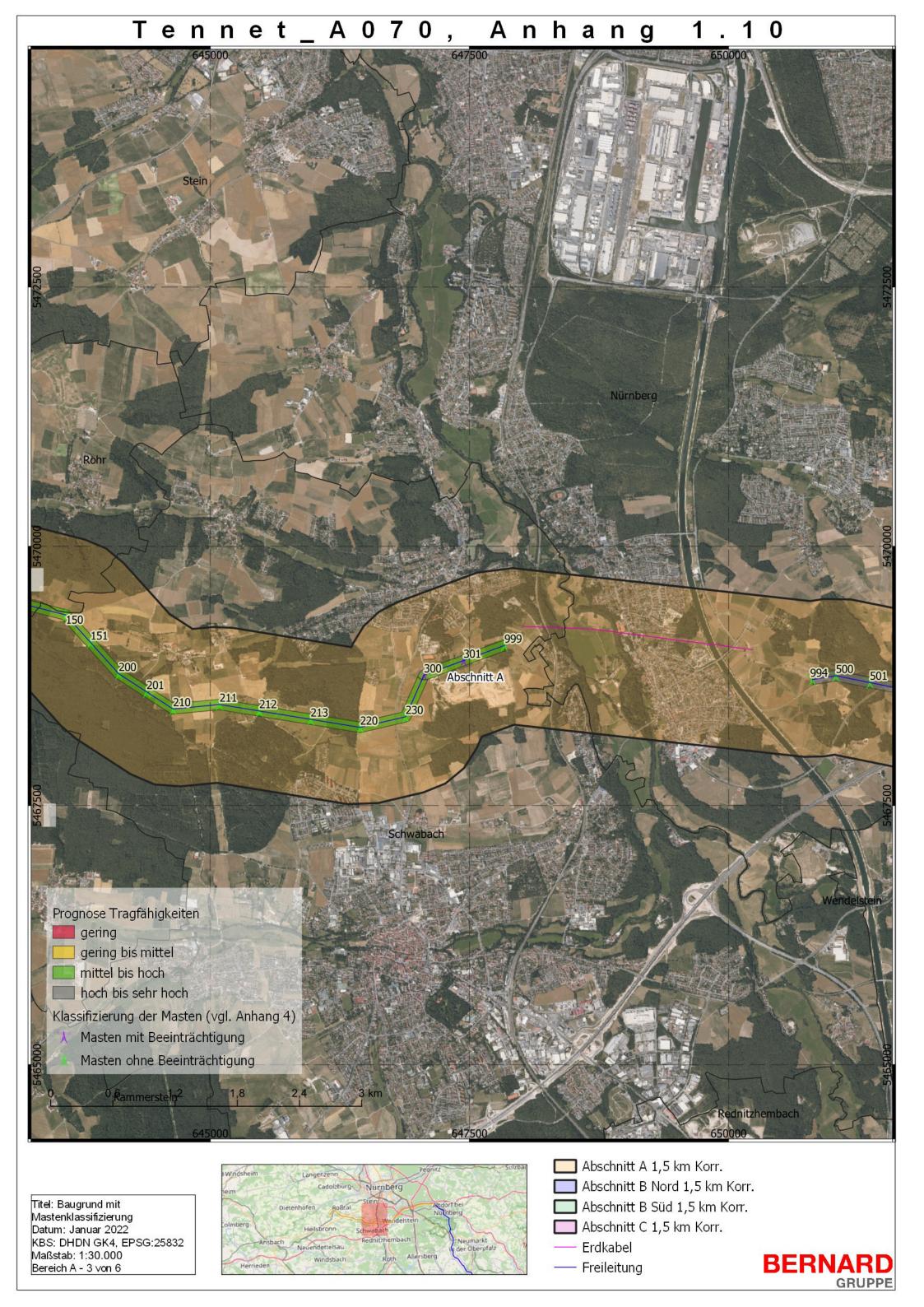


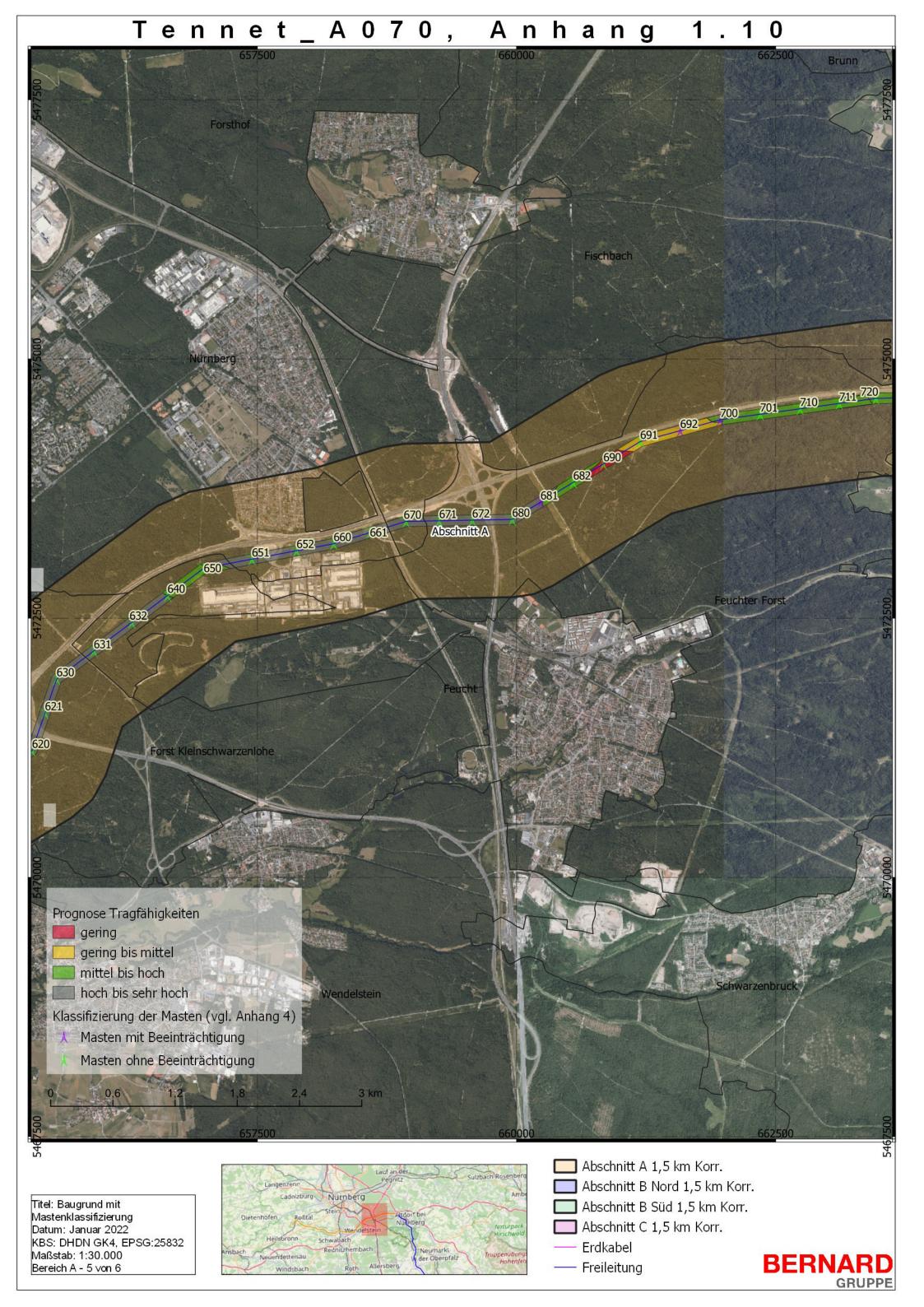
Fotos mit Blickkegel

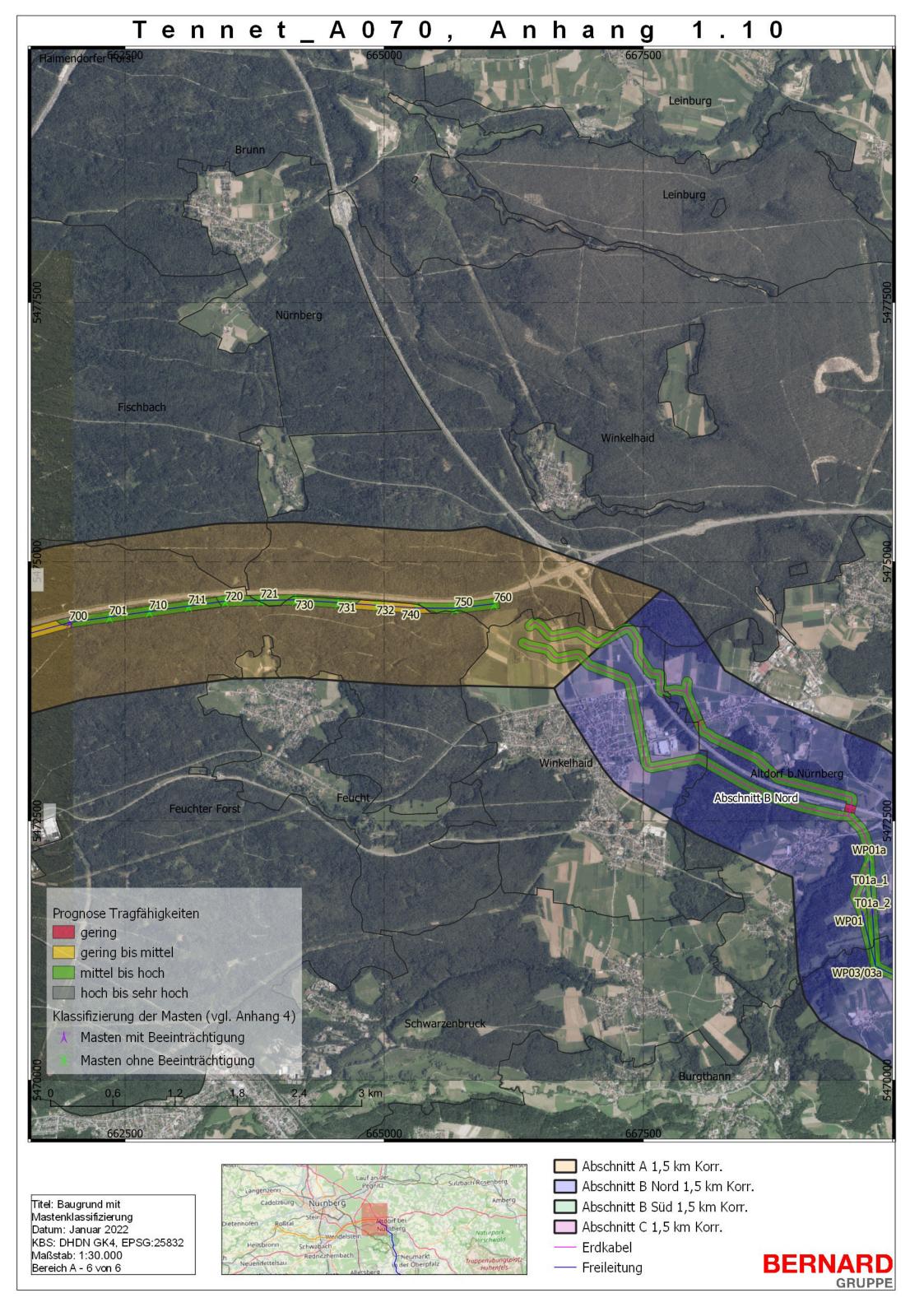









- 1 Planunterlagen
 - 1.1 Übersichtslageplan
 - 1.2 Digitales Geländemodell, Topographie, Maßstab 1 : 60.000
 - 1.3 Lage der Bohrungen, Maßstab 1: 30.000
 - 1.4 Überflutungsflächen, Maßstab 1: 30.000
 - 1.5 Geologische Karte, Maßstab 1: 30.000
 - 1.6 Bodendenkmäler, Altlasten, Maßstab 1: 30.000
 - 1.7 Georisiken, Maßstab 1: 30.000
 - 1.8 Hinweiskarte hohe Grundwasserstände, Maßstab 1: 30.000
 - 1.9 Luftbild mit Fotos, 1: 30.000
 - 1.10 Baugrundkarte mit Klassifizierung Masten nach Beeinträchtigung, Maßstab 1 : 30.000
- 2 Fotodokumentation der Trassenbegehung
- 3 Archivbohrungen
 - 3.1 Liste der Archivbohrungen
 - 3.2 Bohrprofile Korridor 200m
 - 3.3 Bohrprofile Korridor 400m
 - 3.4 Bohrprofile Korridor 600m
 - 3.5 Bohrprofile Korridor >600m
- 4 Klassifizierung der Masten



- 1 Planunterlagen
 - 1.1 Übersichtslageplan
 - 1.2 Digitales Geländemodell, Topographie, Maßstab 1 : 60.000
 - 1.3 Lage der Bohrungen, Maßstab 1: 30.000
 - 1.4 Überflutungsflächen, Maßstab 1: 30.000
 - 1.5 Geologische Karte, Maßstab 1: 30.000
 - 1.6 Bodendenkmäler, Altlasten, Maßstab 1: 30.000
 - 1.7 Georisiken, Maßstab 1: 30.000
 - 1.8 Hinweiskarte hohe Grundwasserstände, Maßstab 1: 30.000
 - 1.9 Luftbild mit Fotos, 1: 30.000
 - 1.10 Baugrundkarte mit Klassifizierung Masten nach Beeinträchtigung, Maßstab 1: 30.000

2 Fotodokumentation der Trassenbegehung

- 3 Archivbohrungen
 - 3.1 Liste der Archivbohrungen
 - 3.2 Bohrprofile Korridor 200m
 - 3.3 Bohrprofile Korridor 400m
 - 3.4 Bohrprofile Korridor 600m
 - 3.5 Bohrprofile Korridor >600m
- 4 Klassifizierung der Masten

Die Lage der dargestellten Fotos sowie die Blickrichtung ist in Anhang 1.9 dargestellt.

Foto 1: (F-A-01 in Anlage 1.9) Bereich Mastnummer 661 Blickrichtung WSW

Foto 2: (F-A-02 in Anlage 1.9) Bereich Mastnummer 681 Blickrichtung NO

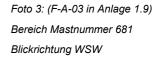


Foto 4: (F-A-04 in Anlage 1.9) Bereich Mastnummer 700 Blickrichtung WSW

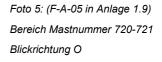


Foto 6: (F-A-06 in Anlage 1.9) Bereich Mastnummer 720-721 Blickrichtung SW

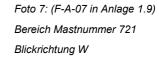
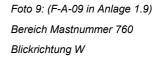
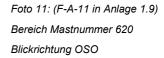


Foto 8: (F-A-08 in Anlage 1.9) Bereich Mastnummer 731-732 Blickrichtung W

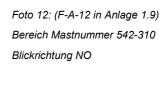


Foto 10: (F-A-10 in Anlage 1.9) Bereich Mastnummer 620 Blickrichtung NNO

Anhang 2: Fotodokumentation der Trassenbegehung P012547 Baugrundvoruntersuchung, A070 – Abschnitt A

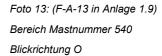


Foto 14: (F-A-14 in Anlage 1.9) Bereich Mastnummer 540 Blickrichtung S

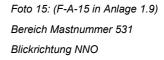


Foto 16: (F-A-16 in Anlage 1.9) Bereich Mastnummer 531 Blickrichtung W

Foto 18: (F-A-18 in Anlage 1.9) Bereich Mastnummer 520 Blickrichtung W

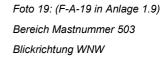


Foto 20: (F-A-20 in Anlage 1.9) Bereich Mastnummer 500 Blickrichtung NW

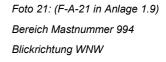


Foto 22: (F-A-22 in Anlage 1.9)
Bereich Erdkabel
Blickrichtung NW

Foto 23: (F-A-23 in Anlage 1.9) Bereich Erdkabel Blickrichtung SO

Foto 24: (F-A-24 in Anlage 1.9)
Bereich Erdkabel
Blickrichtung W

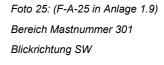


Foto 26: (F-A-26 in Anlage 1.9) Bereich Mastnummer 212-213 Blickrichtung NO

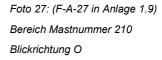


Foto 28: (F-A-28 in Anlage 1.9) Bereich Mastnummer 142 Blickrichtung O

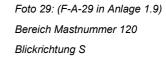


Foto 30: (F-A-30 in Anlage 1.9) Bereich Mastnummer 104 Blickrichtung OSO

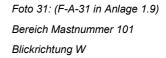


Foto 32: (F-A-32 in Anlage 1.9) Bereich Mastnummer 471 Blickrichtung NW

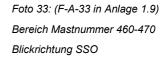


Foto 34: (F-A-34 in Anlage 1.9) Bereich Mastnummer 520 Blickrichtung NO

Foto 37: (F-A-37 in Anlage 1.9) Bereich Mastnummer 441 Blickrichtung SSO

- 1 Planunterlagen
 - 1.1 Übersichtslageplan
 - 1.2 Digitales Geländemodell, Topographie, Maßstab 1 : 60.000
 - 1.3 Lage der Bohrungen, Maßstab 1: 30.000
 - 1.4 Überflutungsflächen, Maßstab 1: 30.000
 - 1.5 Geologische Karte, Maßstab 1: 30.000
 - 1.6 Bodendenkmäler, Altlasten, Maßstab 1: 30.000
 - 1.7 Georisiken, Maßstab 1: 30.000
 - 1.8 Hinweiskarte hohe Grundwasserstände, Maßstab 1: 30.000
 - 1.9 Luftbild mit Fotos, 1: 30.000
 - 1.10 Baugrundkarte mit Klassifizierung Masten nach Beeinträchtigung, Maßstab 1: 30.000
- 2 Fotodokumentation der Trassenbegehung
- 3 Archivbohrungen
 - 3.1 Liste der Archivbohrungen
 - 3.2 Bohrprofile Korridor 200m
 - 3.3 Bohrprofile Korridor 400m
 - 3.4 Bohrprofile Korridor 600m
 - 3.5 Bohrprofile Korridor >600m
- 4 Klassifizierung der Masten

Archivbohrungen A070 - Abschnitt A (Quelle: Bayrisches Landesamt für Umwelt, Datenstelle)

innerhalb 200m Korridor
innerhalb 400m Korridor
innerhalb 600m Korridor
>600m vom Korridor entfernt (Auswahl)

Nr.	Objekt-ID	Schichten-	Ansatzhöhe	Endteufe max.	GW Endstand [m u.
		verzeinis	[m ü. NN]	[m]	Ansatzhöhe]
1	6533BG000022	ja	391	13,5	381,6
2	6533BG015140	nein	373	0	
3	6533BG015141	nein	375	0	
4	6533BG015142	nein	370,46	10,2	
5	6533BG015143	nein	374	0	
6	6533BG015678	ja	423,69	2,25	
7	6533BG015679	ja	433,2	4	
8	6533BG015680	ja	426,41	20	409,01
9	6533BG015681	ja	418,97	15	410,03
10	6533BG015682	ja	410,89	4	407,57
11	6533BG015683	ja	399,11	4	397,87
12	6631BG015018	ja	405	37	396
13	6631BG015035	nein	397,39	0	
14	6631BG015094	ja	398	40	376,63
15	6631BG015174	ja	390,5	13	384,3
16	6631BG015178	ja	400,2	32	385,6
17	6631BG015180	nein	403,6	39	
18	6632BG000001	ja	341	2	
19	6632BG000002	ja	342	9	334,87
20	6632BG000003	<u>ja</u>	347	26	342,75
21	6632BG000004	ja	341	7	
22	6632BG000005	ja	340	7	
23	6632BG000006	ja	341	10	
24	6632BG000007	ja	331	14	320,75
25	6632BG000008	ja	341	2	
26	6632BG000009	ja	327	22	310,5
27	6632BG000010	ja	332	21	315,82
28	6632BG000011	ja	337	20	318,12
29	6632BG000018	ja	334	24,8	317,2
30	6632BG000101	nein	353	1,2	
31	6632BG000102	nein	357	3,7	
32	6632BG015170	ja	326,39	22,5	
33	6632BG015174	ja	340,14	27	
34	6632BG015175	ja	337,47	22	
35	6632BG015183	ja	317,84	25	314,34
36	6632BG015201	ja	327,53	5,2	
37	6632BG015214	ja	326,94	9,6	
38	6632BG015217	ja	327,45	8,2	
39	6632BG015253	ja	348,76	8,4	
40	6632BG015264	ja	335,53	3	
41	6632BG015266	ja	343	4,1	

Archivbohrungen A070 - Abschnitt A (Quelle: Bayrisches Landesamt für Umwelt, Datenstelle)

innerhalb 200m Korridor
innerhalb 400m Korridor
innerhalb 600m Korridor
>600m vom Korridor entfernt (Auswahl)

•	211.1	Schichten-	Ansatzhöhe	Endteufe max.	GW Endstand [m u.
Nr.	Objekt-ID	verzeinis	[m ü. NN]	[m]	Ansatzhöhe]
42	6632BG015268	ja	345,79	4	
43	6632BG015278	ja	353,45	7,1	
44	6632BG015288	ja	306,97	21	303,56
45	6632BG015290	ja	351,85	38	
46	6632BG015299	ja	333,5	10,3	
47	6632BG015302	ja	327,9	5	
48	6632BG015304	ja	329,17	8,3	
49	6632BG015305	ja	335,23	9	
50	6632BG015324	ja	327,35	10	
51	6632BG015325	ja	327,58	9,2	
52	6632BG015326	ja	327,18	8	
53	6632BG015330	ja	333,58	13	
54	6632BG015359	ja	335	11,6	
55	6632BG015379	nein	336	0	
56	6632BG015380	nein	325	0	
57	6632BG015381	nein	339	0	
58	6632BG015382	nein	339	0	
59	6632BG015383	nein	306	0	
60	6632BG015384	nein	305	0	
61	6632BG015398	nein	306	0	
62	6632BG015416	ja	341	44	
63	6632BG015417	ja	337	30,5	
64	6632BG015447	ja	330,99	6	329,29
65	6632BG015470	nein	349,25	39,5	
66	6632BG015471	nein	330,33	21	
67	6632BG015558	nein	344	0	
68	6632BG015559	nein	343	0	
69	6632BG015560	nein	344	0	
70	6632BG015591	ja	324	19	
71	6632BG015677	ja	338,1	22,2	332,9
72	6632BG015683	nein	346	0	
73	6632BG015688	ja	343,8	17,8	338,8
74	6632BG015715	ja	325,5	17	319,3
75	6632BG015740	ja	319,8	18	310,5
76	6632BG015749	ja	344,6	24,8	335
77	6632BG015753	nein	341	57	
78	6632BG015755	ja	344,2	22	337,7
79	6632BG015759	ja	341,79	60	
80	6632BG015761	ja	345,1	19	338,8
81	6632BG015762	ja	345,7	17	339,3
82	6632BG015765	ja	343,5	26	340,47

Archivbohrungen A070 - Abschnitt A (Quelle: Bayrisches Landesamt für Umwelt, Datenstelle)

innerhalb 200m Korridor
innerhalb 400m Korridor
innerhalb 600m Korridor
>600m vom Korridor entfernt (Auswahl)

D	Objety ID	Schichten-	Ansatzhöhe	Endteufe max.	GW Endstand [m u.
Nr.	Objekt-ID	verzeinis	[m ü. NN]	[m]	Ansatzhöhe]
83	6632BG015767	ja	332,2	16	320,2
84	6632BG015771	ja	361,2	20,5	353,87
85	6632BG015776	ja	364,55	16,5	356,75
86	6632BG015777	ja	364,55	7	363,45
87	6632BG015796	ja	340,4	29,5	325,5
88	6632BG015800	ja	316,5	24,5	305,64
89	6632BG015802	ja	340,6	22	330
90	6632BG015804	ja	343,6	23,5	335,3
91	6632BG015807	ja	340,8	27	328,3
92	6632BG015817	ja	319,5	15	313,7
93	6633BG015065	ja	365,08	20	359,58
94	6633BG015066	ja	375,76	20	369,26
95	6633BG015108	nein	374,44	6,8	
96	6633BG015109	ja	376,86	9,1	
97	6633BG015110	ja	376,15	8,4	
98	6633BG015111	ja	369	3,8	
99	6633BG015112	ja	370	6,1	
100	6633BG015113	ja	376,58	9,1	
101	6633BG015114	ja	358,76	7,5	
102	6633BG015115	ja	360	12	
103	6633BG015116	ja	355,26	10	
104	6633BG015117	ja	355,78	9	
105	6633BG015118	ja	362,62	19,3	
106	6633BG015119	ja	357,89	12,2	
107	6633BG015120	ja	352,22	7,6	
108	6633BG015121	ja	354,8	12	
109	6633BG015122	ja	351,23	9,4	
110	6633BG015123	ja	352,57	8,2	
111	6633BG015160	nein	367	0	
112	6633BG015161	nein	364	0	
113	6633BG015162	nein	374	21,5	
114	6633BG015199	nein	370	0	
115	6633BG015200	nein	372	0	
116	6633BG015202	nein	375	0	
117	6633BG015204	nein	374	0	
118	6633BG015205	nein	376	0	
119	6633BG015207	nein	372	0	
120	6633BG015210	nein	362	0	
121	6633BG015211	nein	357	0	
122	6633BG015279	ja	351,12	4,5	
123	6633BG015280	ja	351,34	4	

Archivbohrungen A070 - Abschnitt A (Quelle: Bayrisches Landesamt für Umwelt, Datenstelle)

innerhalb 200m Korridor
innerhalb 400m Korridor
innerhalb 600m Korridor
>600m vom Korridor entfernt (Auswahl)

Nr.	Objekt-ID	Schichten-	Ansatzhöhe	Endteufe max.	GW Endstand [m u.
	-	verzeinis	[m ü. NN]	[m]	Ansatzhöhe]
124	6633BG015281	ja	355,28	4,1	
125	6633BG015282	ja	359,95	1,4	
126	6633BG015283	ja	360,62	10	
127	6633BG015284	ja	364,06	30	
128	6633BG015285	ja	372,49	25	
129	6633BG015286	ja	369,58	11	
130	6633BG015287	ja	372,4	25	
131	6633BG015288	ja	371,08	25	
132	6633BG015289	ja	368,66	25	
133	6633BG015371	ja	423,62	4	
134	6633BG015372	ja	428,98	4,5	427,26
135	6633BG015373	ja	430,99	3,9	
136	6633BG015374	ja	426,34	4	425,17
137	6633BG015381	ja	376,81	15,2	
138	6633BG015382	ja	374,86	10,8	
139	6631BG000027	ja	384,9	118	
140	6631BG000028	ja	377,3	118,5	
141	6631BG000029	ja	377,1	90	367,8
142	6631BG015011	ja	378	169	332,71
143	6631BG015012	ja	385,2	176,5	330,25

Archivbohrungen A070 - Abschnitt A - EWS (Quelle: Bayrisches Landesamt für Umwelt, Datenstelle)

innerhalb 200m Korridor
innerhalb 400m Korridor
innerhalb 600m Korridor
>600m vom Korridor entfernt (Auswahl)

Nie	Objekt ID	Schichten-	Ansatzhöhe	Endteufe max.	GW Endstand [m u.
Nr.	Objekt-ID	verzeinis	[m ü. NN]	[m]	Ansatzhöhe]
144	6632EB000015	nein	328,8	50	
145	6632EB000020	nein	332,7	58	
146	6632EB000068	nein	318,4	65	
147	6632EB000072	nein	319	75	
148	6632EB000073	nein	319	75	
149	6632EB000074	nein	319,2	75	
150	6632EB000085	ja	323,4	60	306,83
151	6632EB000123	nein	323,2	60	303
152	6632EB000191	nein	330	50	
153	6632EB000192	nein	329,8	50	
154	6632EB000204	nein	318,4	65	
155	6632EB000206	nein	323,3	60	303
156	6632EB000222	nein	328,9	50	
157	6632EB000224	ja	318,3	65	
158	6632EB000229	nein	318,4	65	
159	6632EB000298	nein	334	58	
160	6632EB000300	nein	333,4	58	
161	6632EB015025	nein	341,1	75	
162	6632EB015026	nein	341,2	75	
163	6632EB015027	nein	341,2	75	
164	6632EB015028	nein	340,6	75	
165	6632EB015029	nein	340,7	75	
166	6632EB015030	nein	340,9	75	
167	6632EB015031	nein	341,1	75	
168	6632EB015032	nein	340,5	75	
169	6632EB015033	nein	341,9	75	
170	6632EB015034	nein	341,4	75	
171	6632EB015035	nein	347,3	95	
172	6632EB015036	nein	347,4	95	
173	6632EB015037	nein	347,2	95	
174	6632EB015050	ja	328,7	75	
175	6632EB015051	ja	328,8	75	
176	6632EB015107	ja	328,3	72	313,9
177	6632EB015108	ja	328,2	72	313,9
178	6632EB015109	ja	327,9	72	313,9
179	6632EB015110	ja	327,6	72	313,9
180	6632EB015111	ja	327,3	72	313,9
181	6632EB015228	nein	333,5	80	
182	6632EB015239	ja	335,2	80	
183	6633EB000032	ja	427,9	64	
184	6633EB000041	ja	427,9	64	

Archivbohrungen A070 - Abschnitt A - EWS (Quelle: Bayrisches Landesamt für Umwelt, Datenstelle)

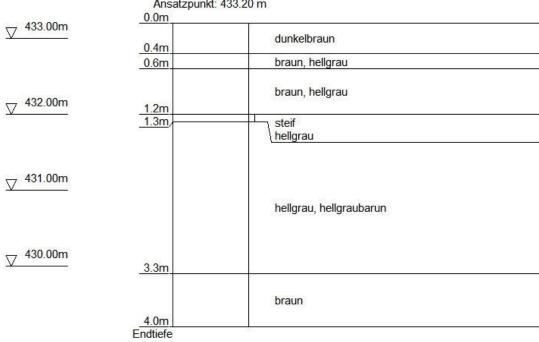
innerhalb 200m Korridor
innerhalb 400m Korridor
innerhalb 600m Korridor
>600m vom Korridor entfernt (Auswahl)

Nin	Objekt ID	Schichten-	Ansatzhöhe	Endteufe max.	GW Endstand [m u.
Nr.	Objekt-ID	verzeinis	[m ü. NN]	[m]	Ansatzhöhe]
185	6633EB000070	nein	377,4	99	
186	6633EB000071	nein	376,9	99	
187	6633EB000072	nein	377	99	
188	6633EB000073	nein	376,9	99	
189	6633EB000074	nein	376,6	99	
190	6633EB000085	nein	378,7	100	
191	6633EB000086	nein	379	100	
192	6633EB000089	nein	376,9	99	
193	6633EB000090	nein	377,3	99	
194	6633EB000091	nein	377,3	99	
195	6633EB000092	nein	376,9	99	
196	6633EB000093	nein	377,6	99	
197	6633EB000094	nein	377,5	99	
198	6633EB000097	nein	377,3	99	
199	6633EB000101	nein	378,5	100	
200	6633EB000102	nein	379,2	100	
201	6633EB000103	nein	378,9	100	
202	6633EB000104	nein	378,8	100	
203	6633EB000105	nein	377,6	99	
204	6633EB000106	nein	377,3	99	
205	6633EB000107	nein	376,2	99	
206	6633EB000114	nein	355,5	70	
207	6633EB000115	ja	355,2	70	344,85
208	6633EB000119	nein	355,3	70	
209	6633EB000126	nein	378,6	100	
210	6633EB000127	nein	377,4	99	
211	6633EB000128	nein	378,9	100	
212	6633EB000129	nein	378,9	100	
213	6633EB000130	nein	378,8	100	
214	6633EB000131	nein	378,7	100	
215	6633EB000136	ja	427,9	64	
216	6633EB000153	ja	427,9	64	
217	6633EB000164	nein	376,9	99	
218	6633EB000165	nein	378,6	100	
219	6633EB000166	nein	378,2	100	
220	6633EB000167	nein	378,4	100	
221	6633EB000168	nein	378,8	100	
222	6633EB000169	ja	378,7	100	327,5
223	6633EB000193	nein	378,5	100	
224	6633EB000194	nein	378,2	100	
225	6633EB000195	nein	378,6	100	

Archivbohrungen A070 - Abschnitt A - EWS (Quelle: Bayrisches Landesamt für Umwelt, Datenstelle)

innerhalb 200m Korridor
innerhalb 400m Korridor
innerhalb 600m Korridor
>600m vom Korridor entfernt (Auswahl)

Nr.	Objekt-ID	Schichten- verzeinis	Ansatzhöhe [m ü. NN]	Endteufe max. [m]	GW Endstand [m u. Ansatzhöhe]
226	6633EB000198	nein	378,4	100	/ insuterionej
227	6633EB000199	nein	378,7	100	
228	6633EB000200	nein	379	100	
229	6633EB000201	nein	377,3	99	
230	6633EB000208	nein	379	100	
231	6633EB000209	nein	378,8	100	
232	6633EB015020	ja	352,6	90	
233	6633EB015021	ja	352,5	90	
234	6633EB015046	ja	362,9	70	346,5
235	6633EB015047	nein	362,8	70	346,5
236	6633EB015048	ja	362,7	70	346,5
237	6633EB015049	nein	362,7	70	


ABSCHNITT A - ANHANG:

- 1 Planunterlagen
 - 1.1 Übersichtslageplan
 - 1.2 Digitales Geländemodell, Topographie, Maßstab 1 : 60.000
 - 1.3 Lage der Bohrungen, Maßstab 1: 30.000
 - 1.4 Überflutungsflächen, Maßstab 1: 30.000
 - 1.5 Geologische Karte, Maßstab 1: 30.000
 - 1.6 Bodendenkmäler, Altlasten, Maßstab 1: 30.000
 - 1.7 Georisiken, Maßstab 1: 30.000
 - 1.8 Hinweiskarte hohe Grundwasserstände, Maßstab 1: 30.000
 - 1.9 Luftbild mit Fotos, 1: 30.000
 - 1.10 Baugrundkarte mit Klassifizierung Masten nach Beeinträchtigung, Maßstab 1: 30.000
- 2 Fotodokumentation der Trassenbegehung
- 3 Archivbohrungen
 - 3.1 Liste der Archivbohrungen
 - 3.2 Bohrprofile Korridor 200m
 - 3.3 Bohrprofile Korridor 400m
 - 3.4 Bohrprofile Korridor 600m
 - 3.5 Bohrprofile Korridor >600m
- 4 Klassifizierung der Masten

Projekt : Tennet A070	
Projektnr.: P012547 - Abschnitt A	
Anlage :	
Maßstab : 1:50	

7 / 6533BG015679

Ansatzpunkt: 433.20 m

Projekt : Tennet A070
Projektnr.: P012547 - Abschnitt A
Anlage :
Maßstab : 1:100

8 / 6533BG015680

		Ansatzpunkt: 426.41 0.0m_	l m
√ 426.00m		0.4m	grau
			hellbraun
√ 425.00m		1.2m 1.5m	hellbraun
		<u>- 1.0111</u>	Telioraum
√ 424.00m			grau
100000000		2.2	3
∑ 423.00m		3.2m	
122 00		4.1m	grau
√ 422.00m		4.4m	grau
424 00m		5.2m	rotbraun
√ 421.00m		0.2111	
√ 420.00m			arau
<u> </u>			grau
▽ 419.00m		7.1m	
∑ 419.00m		7.0	hellgrau
√ 418.00m		7.9m	9992
<u>V</u>			hellgrau
√ 417.00m			neligrau
		9.6m	5
√ 416.00m			
			hellgrau
√ 415.00m		11.5m	
- ×		11.5111	
√ 414.00m			
			hellgraubraun
√ 413.00m			nong-dab-dan
√ 412.00m		14.2m	
State of the state			
√ 411.00m			
440.00-			hellgrau
√ 410.00m			00.000 (00.000
400 00m			
√ 409.00m	GW ▼ 409.01mNN	17.6m	
- 408 00m			grau
<u> √ 408.00m</u>		18.4m	
√ 407.00m			grau
√ 407.00m			grau
		20.0m Endtiefe	

DC

		Projekt : Tennet A070	1
		Projektnr.: P012547 - Abschnitt A	
		Anlage :	
		Maßstab : 1: 200	
	1:	2 / 6631BG015018	
→ 405.00m		Ansatzpunkt: 405.00 m	
		0.0m 0.4m humos	
<u> √ 403.00m</u>		Ton	
<u> √ 401.00m</u>		4.0m	
∑ 399.00m		Ton, sandig	
∑ 397.00m		gelb	
▽ 395.00m	GW <u>▼ 396.00mNN</u>	8.5m	
→ 393.00m		Z Z Z Z Edit Size Fels, Sandstein	

∑ 387.00m

∑ 385.00m

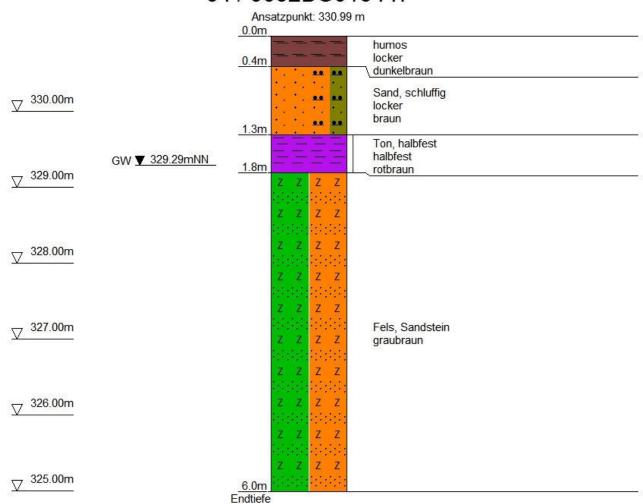
∑ 381.00m

∑ 379.00m

∑ 377.00m

∑ 375.00m

∑ 373.00m

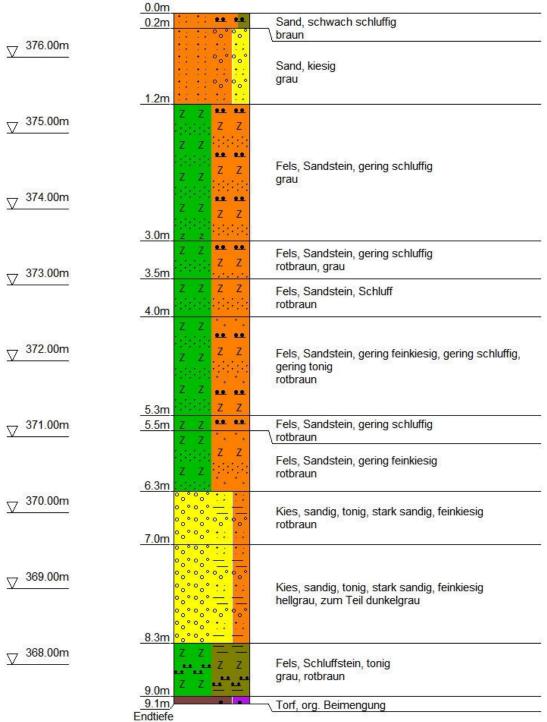

∑ 369.00m

DC

Projekt : Tennet A070	
Projektnr.: P012547 - Abschnitt A	
Anlage :	
Maßstab : 1:50	

Projekt : Tennet A070	
Projektnr.: P012547 - Abschnitt A	
Anlage :	
Maßstab : 1:50	

Projekt : Tennet A070	
Projektnr.: P012547 - Abschnitt A	
Anlage :	
Maßstab : 1:50	


Ansatzpunkt: 376.15 m <u></u> 376.00m AAAA Auffüllung 0.3m Fels, Sandstein, gering tonig graubraun 0.8m 1.0m Fels, Sandstein, gering tonig Fels, Sandstein <u>▽ 374.00m</u> grau 2.7m <u></u> 373.00m Fels, Sandstein, gering mittelkiesig, gering tonig rotbraun <u>√</u> 372.00m 4.0m Fels, Sandstein, gering tonig hellbraun ∑_371.00m 5.0m <u></u> 370.00m Fels, Sandstein, tonig grau, rotbraun ∑_369.00m 7.2m Fels, Sandstein, tonig grau, braun 7.8m <u></u> 368.00m 8.0m Fels, Schluffstein, Ton graugrün Ton, schluffig 8.4m

rotbraun

Endtiefe

Projekt : Tennet A070	
Projektnr.: P012547 - Abschnitt A	
Anlage :	
Maßstab: 1:50	

Ansatzpunkt: 376.58 m

DC

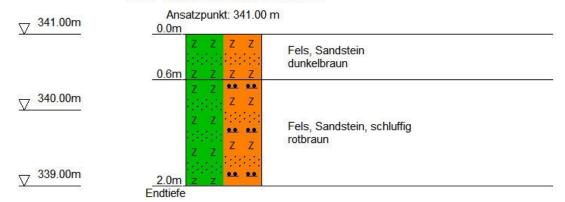
ABSCHNITT A - ANHANG:

- 1 Planunterlagen
 - 1.1 Übersichtslageplan
 - 1.2 Digitales Geländemodell, Topographie, Maßstab 1 : 60.000
 - 1.3 Lage der Bohrungen, Maßstab 1: 30.000
 - 1.4 Überflutungsflächen, Maßstab 1: 30.000
 - 1.5 Geologische Karte, Maßstab 1: 30.000
 - 1.6 Bodendenkmäler, Altlasten, Maßstab 1: 30.000
 - 1.7 Georisiken, Maßstab 1: 30.000
 - 1.8 Hinweiskarte hohe Grundwasserstände, Maßstab 1: 30.000
 - 1.9 Luftbild mit Fotos, 1: 30.000
 - 1.10 Baugrundkarte mit Klassifizierung Masten nach Beeinträchtigung, Maßstab 1: 30.000
- 2 Fotodokumentation der Trassenbegehung
- 3 Archivbohrungen
 - 3.1 Liste der Archivbohrungen
 - 3.2 Bohrprofile Korridor 200m
 - 3.3 Bohrprofile Korridor 400m
 - 3.4 Bohrprofile Korridor 600m
 - 3.5 Bohrprofile Korridor >600m
- 4 Klassifizierung der Masten

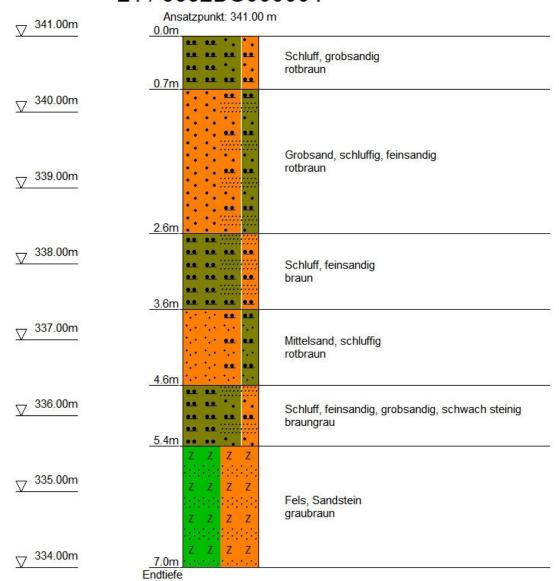
Projekt : Tennet A070	
Projektnr.: P012547 - Abschnitt A	
Anlage :	
Maßstab : 1:50	

6 / 6533BG015678

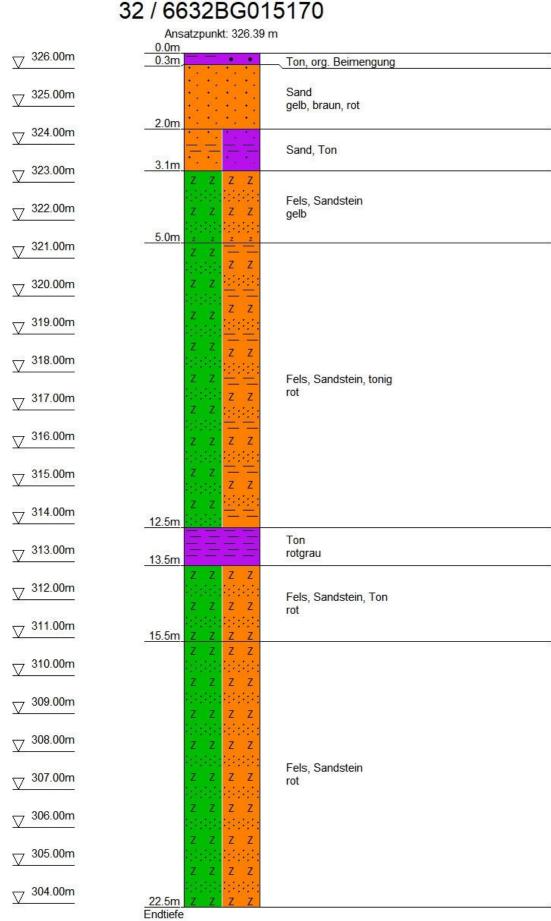
	0.0m		
	0.2m	weich	
	0.5	\ dunkelbraun	
423.00m	0.5m	braun, hellgrau	
423.00111	0.6m 0.8m	\ dunkelgrau	
	1.0m	braungrau	
		steif \graubraun	
100.00-	1.5m	graubraun	
422.00m	1.9m	steif bis halbfest	
	2.1m	braun	
	2.3m	braun	


Projekt : Tennet A070	
Projektnr.: P012547 - Abschnitt A	
Anlage :	
Maßstab : 1:75	

9 / 6533BG015681


Ansatzpunkt: 418.97 m 0.0m rotgrau 0.4m dunkelbraun 0.8m hellbraun 1.7m <u>√ 417.00m</u> hellgraubraun 2.7m <u>√</u> 415.00m hellgraubraun 4.8m 4.9m \ rotbraun √ 413.00m hellgrau 6.5m hellgrau 8.1m GW ▼ 410.03mNN hellgrau 9.6m <u>√</u> 409.00m hellgrau 10.0m hellgrau <u>√</u> 407.00m <u>√</u> 406.00m 12.8m hellbraun, violettbraun 14.2m grüngrau <u>√ 404.00m</u> 15.0m Endtiefe

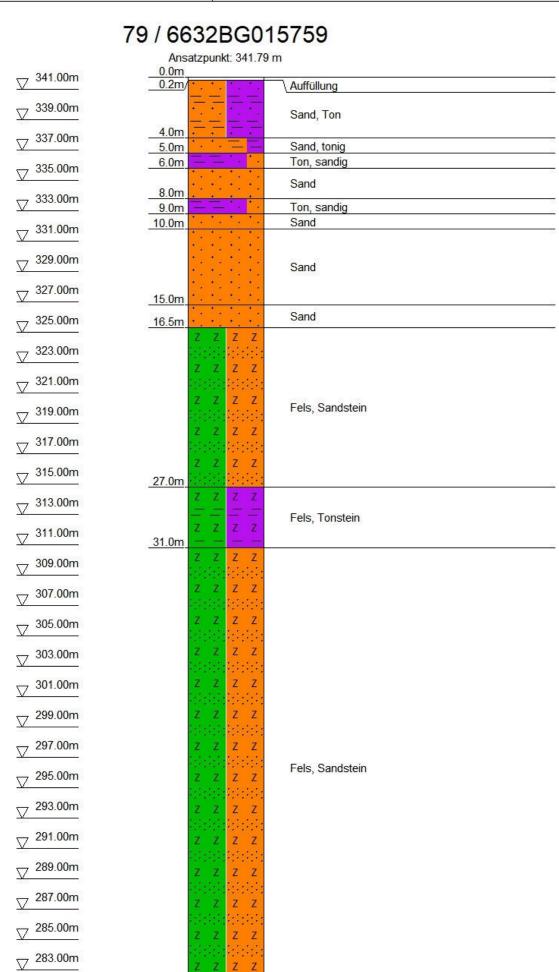
DC


Projekt : Tennet A070	
Projektnr.: P012547 - Abschnitt A	
Anlage :	
Maßstab: 1:50	

Projekt : Tennet A070	
Projektnr.: P012547 - Abschnitt A	
Anlage :	
Maßstab : 1:50	

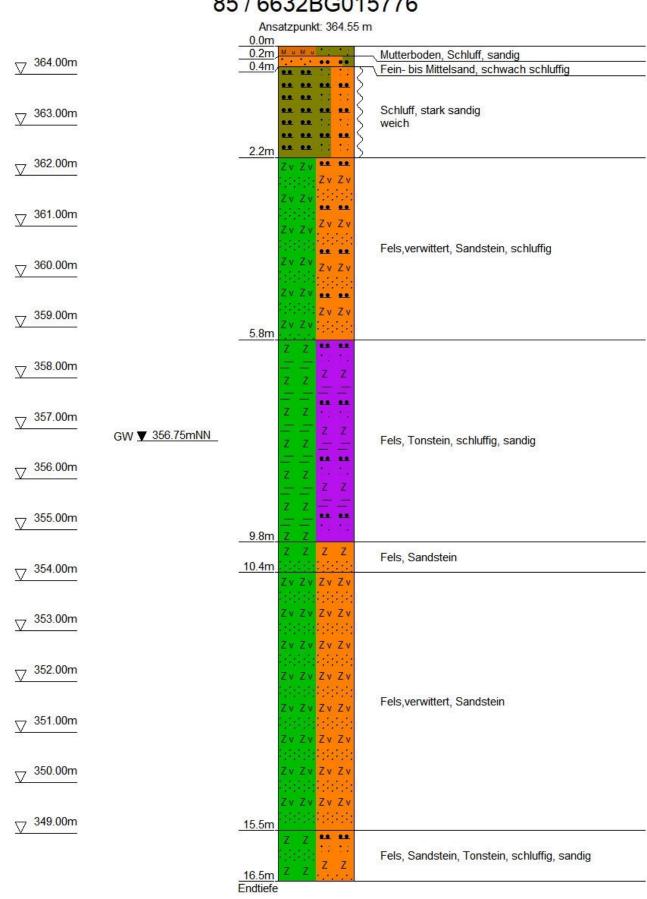
Projekt : Tennet A070	
Projektnr.: P012547 - Abschnitt A	
Anlage :	
Maßstab: 1:100	

Projekt : Tennet A070	
Projektnr.: P012547 - Abschnitt A	
Anlage :	
Maßstab: 1:50	

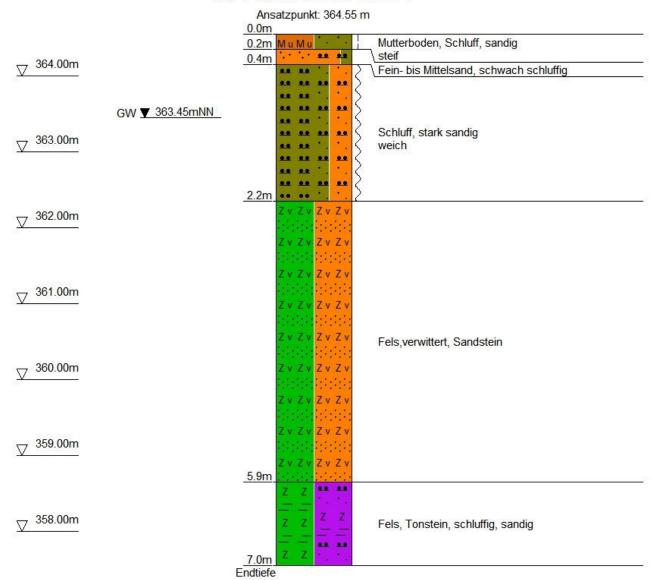


Projekt : Tennet A070	
Projektnr.: P012547 - Abschnitt A	
Anlage :	
Maßstab : 1: 150	

Ansatzpunkt: 344.60 m


		0.0m	
∑ 344.00m		0.5m M u M u M u M u	Mutterboden
∑ 343.00m		Z v Z v Z v Z v · · · · · · · · · · · ·	
√ 342.00m		Zv Zv Zv Zv	
√ 341.00m		·.· ·.· ·.· ·.· Zv Zv Zv	Fels,verwittert, Mittelsand,
√ 340.00m		7. · · · · · · · · · · · · · · · · · · ·	
√ 339.00m		5.5m *** *** ***	
∑ 338.00m		6.6m () () () () () () () () () (Fels, Sandstein
∑ 337.00m		Z Z Z Z	
∑ 336.00m		ZZZZ	
∑ 335.00m	GW ▼ 335.00mNN	ZZZZ	Fels, Tonstein
∑ 334.00m			rot, weiß
∑ 332.00m		12.6m Z Z Z Z	
√ 331.00m		13.3m Z Z Z Z	Fels, Sandstein
√ 330.00m		$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
▽ 329.00m		<u>z</u> <u>z</u> <u>z</u> <u>z</u>	Fels, Tonstein weiß, grau
▽ 328.00m		ZZZZ	wells, grau
▽ 327.00m		17.3m	
▽ 326.00m		Z Z Z Z (;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;	
∑ 325.00m		Z Z Z Z S	
∑ 324.00m		ZZZZ	Fels, Sandstein weich
∑ 323.00m		z z z z	beige
√ 322.00m			
√ 321.00m		23.6m (23.6m)	
∑ 320.00m		Z Z Z Z Z 24.8m	Fels, Tonstein rot, braun
		Endtiefe	

Projekt : Tennet A070	
Projektnr.: P012547 - Abschnitt A	
Anlage :	
Maßstab : 1: 250	


60.0m Endtiefe

Projekt : Tennet A070	
Projektnr.: P012547 - Abschnitt A	
Anlage :	
Maßstab: 1:75	

DC

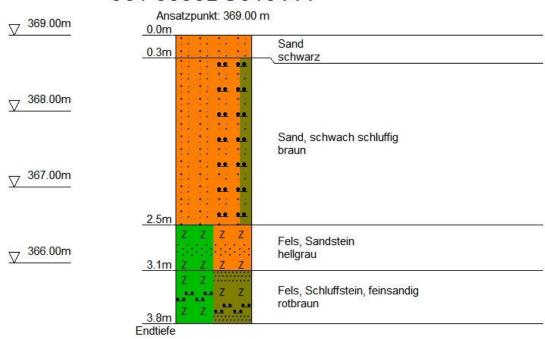
Projekt : Tennet A070	
Projektnr.: P012547 - Abschnitt A	
Anlage :	
Maßstab : 1:50	

Projekt : Tennet A070	
Projektnr.: P012547 - Abschnitt A	
Anlage :	
Maßstab : 1:100	

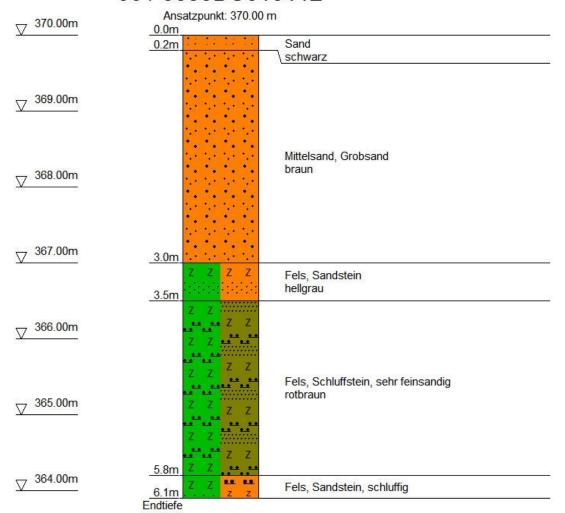
90 / 6632BG015804 Ansatzpunkt: 343.60 m 0.0m Mutterboden MuMuMuMu 0.5m Fels, verwittert, Mittelsand <u></u> 339.00m 4.5m <u></u> 338.00m Fels, Sandstein 6.3m ∑ 335.00m GW ▼ 335.30mNN <u></u> 334.00m Fels, Tonstein weiß,grün <u></u> 333.00m <u></u> 331.00m 12.8m Fels, Sandstein 14.0m Fels, Tonstein weiß, grau <u></u> 327.00m 16.3m <u></u> 324.00m Fels, Sandstein weich beige <u></u> 323.00m ∑ 322.00m <u></u> 321.00m 23.0m Fels, Tonstein 23.5m rot, braun Endtiefe

		Projekt : Tennet A0	100/01/00	
			Abschnitt A	
		Anlage :		
		Maßstab : 1:75		
92 / 6632BG015817 Ansatzpunkt: 319.50 m				
∑ 319.00m		U.SIM	terboden	
∑ 318.00m				
<u> </u>		Mitte	elsand	
∑ 316.00m				
∑ 315.00m		4.2m	s, Sandstein ch	
<u> </u>	GW ▼ 313.70mNN	z z z z z z z z z z z z z z z z z z z		
∑ 313.00m			s, Tonstein un, beige	
040.00		9.0m Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z		
→ 310.00m → 309.00m				
√ 308.00m		Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z	s, Sandstein	
√ 307.00m		z z z z wei	ch	
▽ 306.00m		z z z z z z z z z z z z z z z z z z z		
∑ 305.00m		14.0m (10.00)	s, Tonstein un, rot	

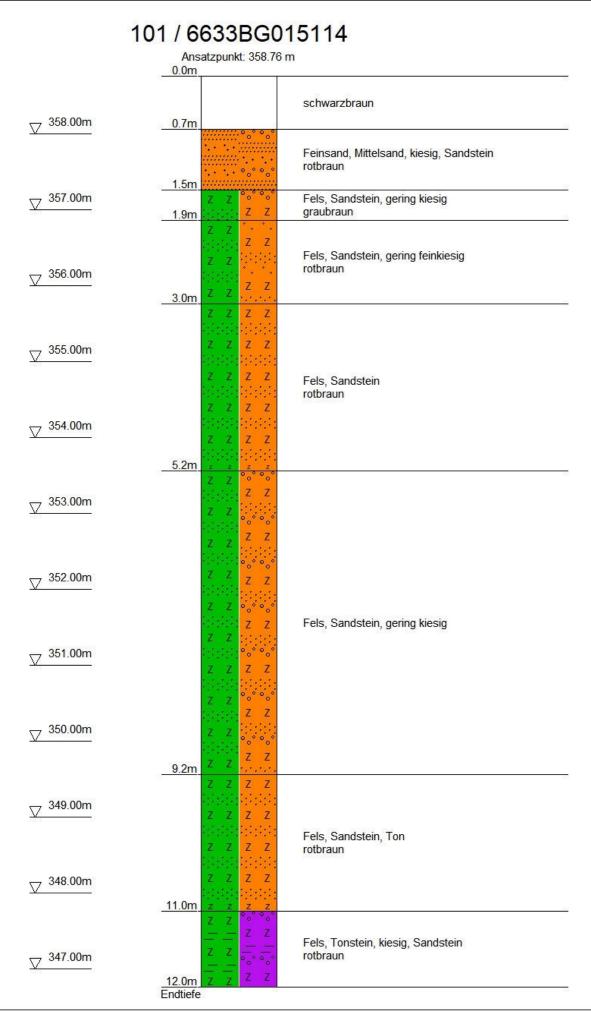
Endtiefe


Projekt : Tennet A070	
Projektnr.: P012547 - Abschnitt A	
Anlage :	
Maßstab : 1:50	

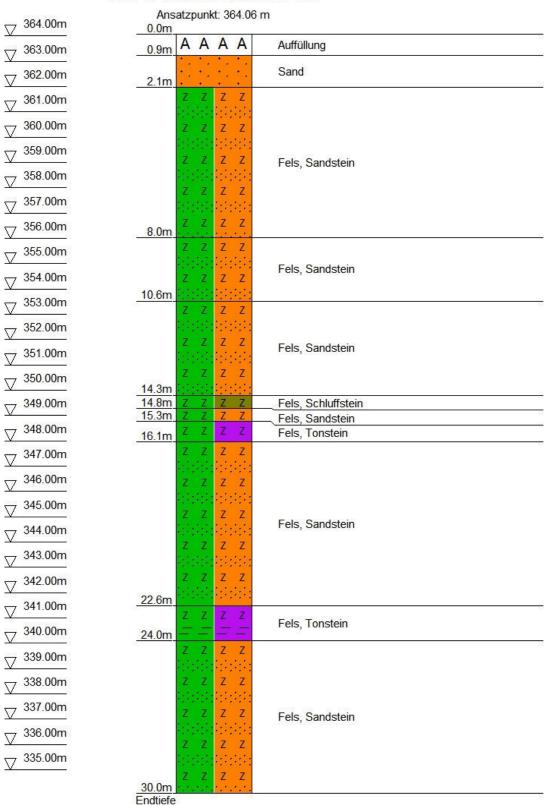
Ansatzpunkt: 376.86 m

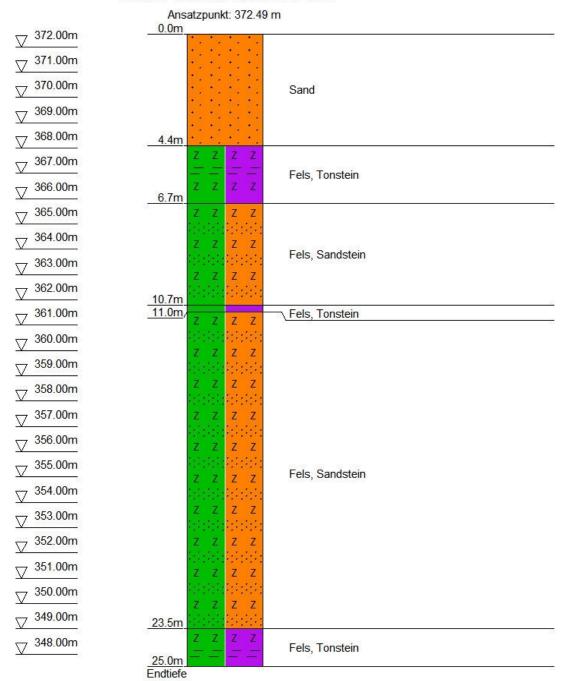

	0.0m	
	A A 0.4m 0.5 0.5	Auffüllung, Steine, sandig, schluffig grau
▽ 376.00m	1.0m	Sand, schluffig braun
<u>▽ 375.00m</u>	z z z z z z z z z z z z z z z z z z z	Fels, Sandstein grau
∑ 374.00m	2.8m Z Z — — 3.0m Z Z — —	Fels, Sandstein, tonig rotbraun
	Z Z — —	Fels, Sandstein, tonig dunkelbraun
▽ 373.00m	2 Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z	Fels, Sandstein, gering tonig grau
	z z z z z z z z z z z z z z z z z z z	Fels, Sandstein, tonig rotbraun
	6.3m Z Z Z Z	Fels, Sandstein, tonig violett
<u>▽ 370.00m</u>	z z <u>– – </u>	(World
<u> </u>	Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z	Fels, Sandstein, tonig rotbraun
∑ 368.00m	8.7m 8.9m	Ton, sandig
	9.1m — — · · · · · · · · · · · · · · · · ·	∖rotbraun Ton, sandig
		graugrün

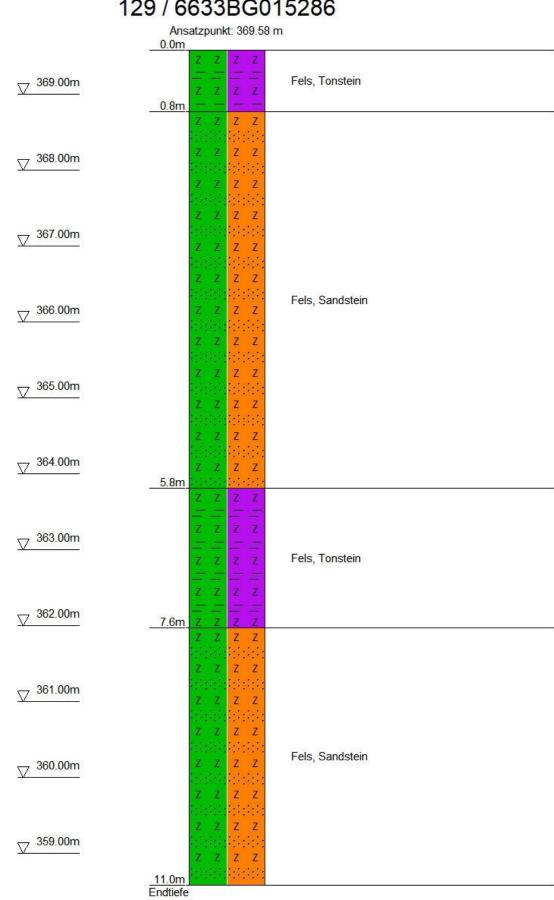
DC

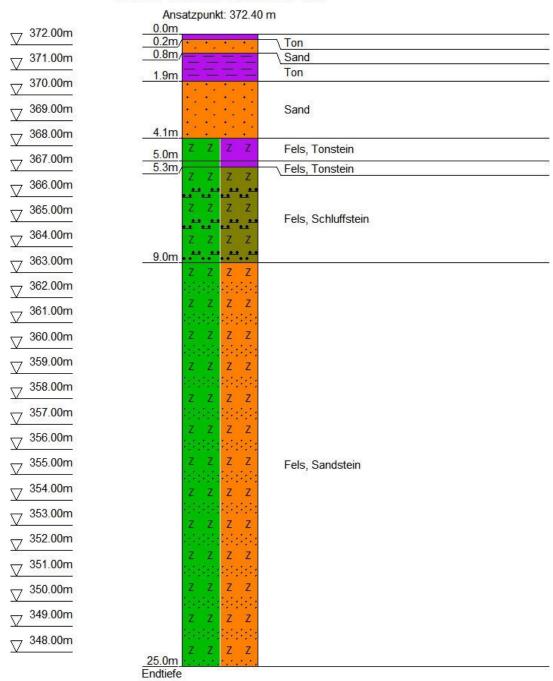

Projekt : Tennet A070	
Projektnr.: P012547 - Abschnitt A	
Anlage :	
Maßstab : 1:50	

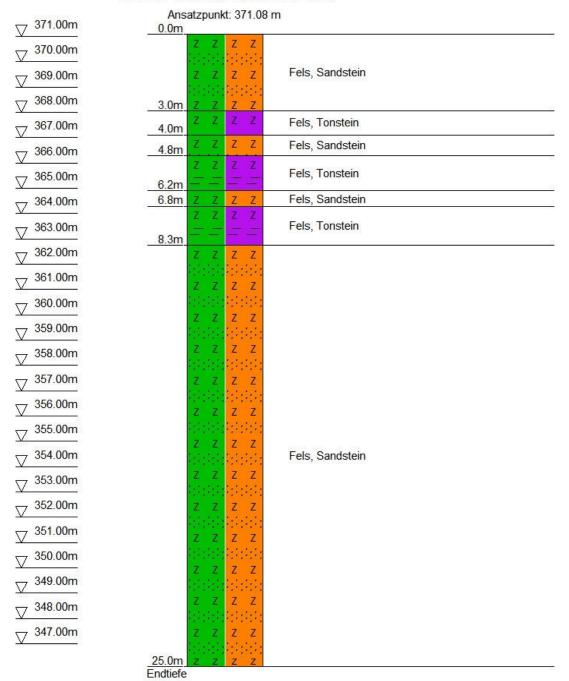
Projekt : Tennet A070	
Projektnr.: P012547 - Abschnitt A	
Anlage :	
Maßstab : 1:50	

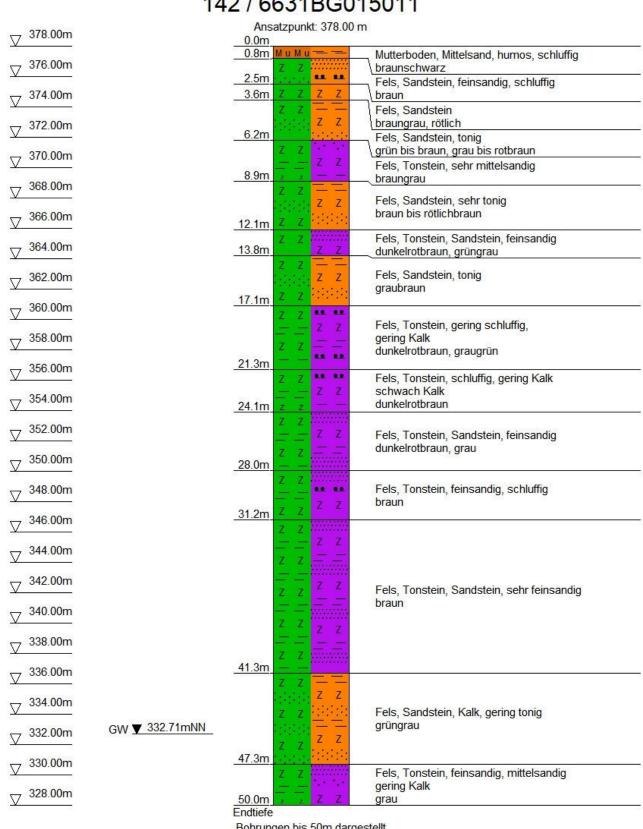

Projekt : Tennet A070	
Projektnr.: P012547 - Abschnitt A	
Anlage :	
Maßstab : 1:50	

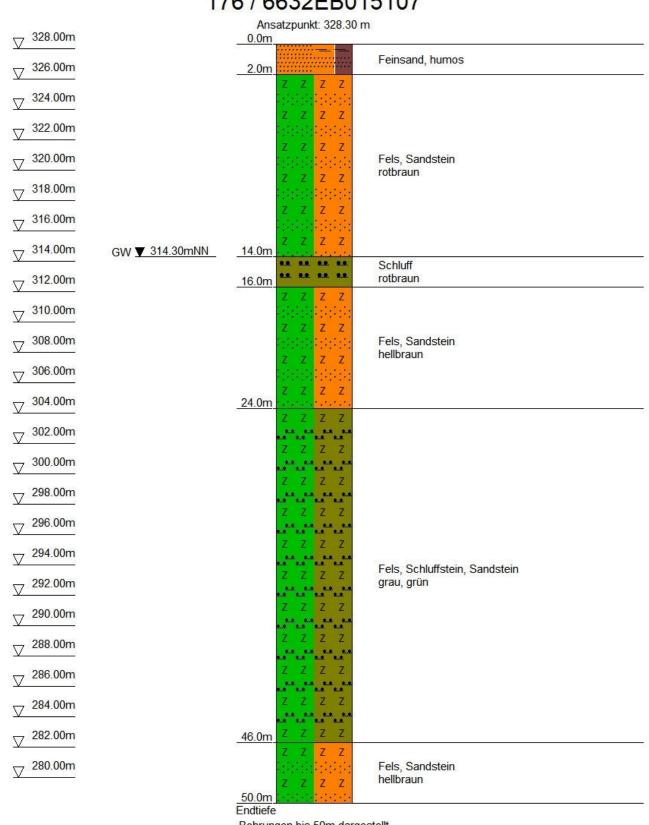

Projekt : Tennet A070	
Projektnr.: P012547 - Abschnitt A	-
Anlage :	
Maßstab : 1:50	

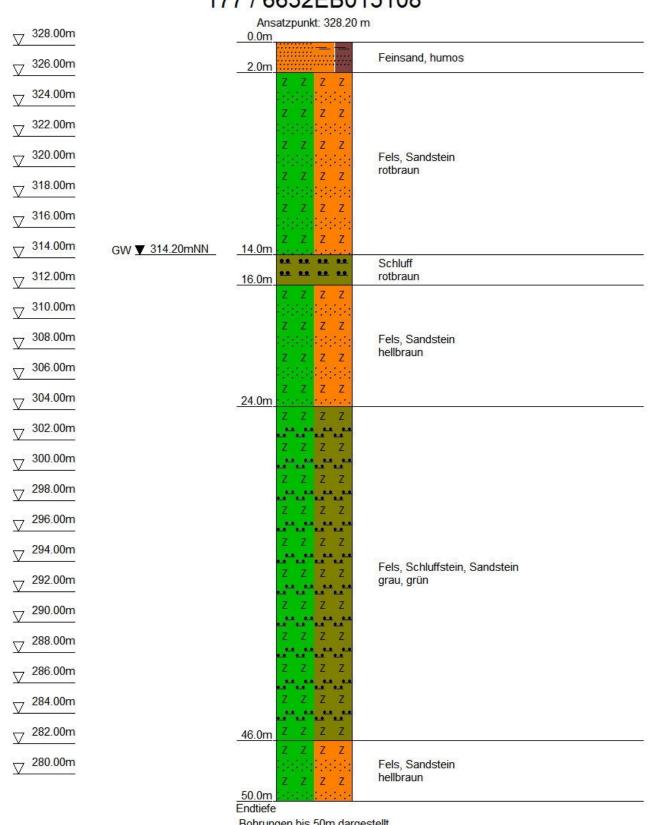

Projekt : Tennet A070	
Projektnr.: P012547 - Abschnitt A	
Anlage :	
Maßstab : 1: 150	


Projekt : Tennet A070	
Projektnr.: P012547 - Abschnitt A	
Anlage :	
Maßstab : 1:150	

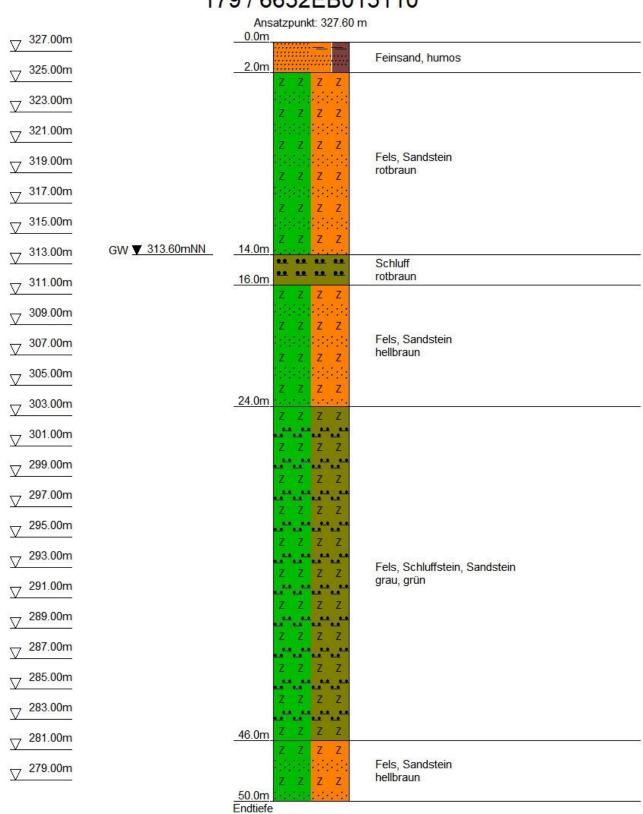

Projekt : Tennet A070	
Projektnr.: P012547 - Abschnitt A	
Anlage :	
Maßstab : 1:50	

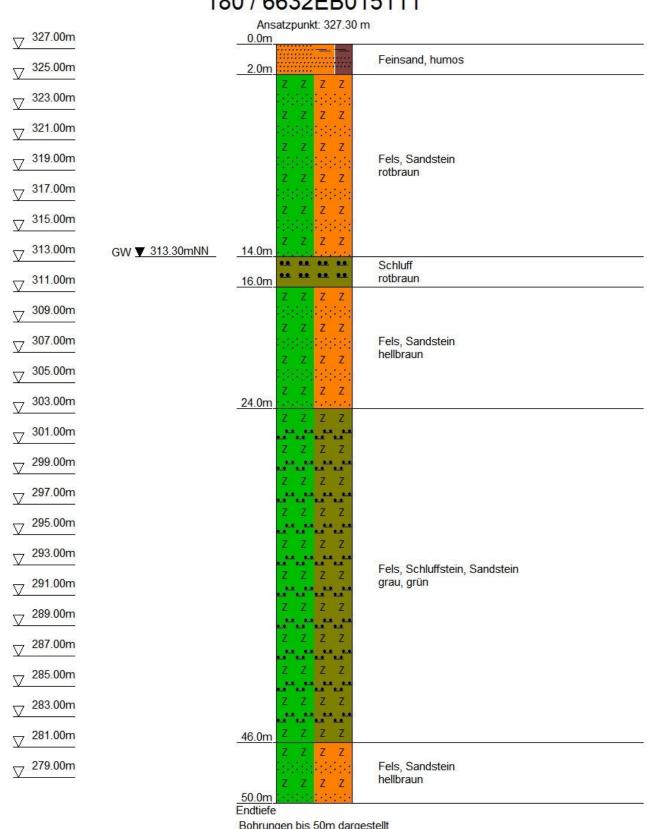

Projekt : Tennet A070	
Projektnr.: P012547 - Abschnitt A	
Anlage :	
Maßstab: 1:150	


Projekt : Tennet A070	
Projektnr.: P012547 - Abschnitt A	-
Anlage :	
Maßstab : 1: 150	


Projekt : Tennet A070	
Projektnr.: P012547 - Abschnitt A	
Anlage :	
Maßstab : 1: 250	

Projekt : Tennet A070	
Projektnr.: P012547 - Abschnitt A	
Anlage :	
Maßstab : 1: 250	


Projekt : Tennet A070	
Projektnr.: P012547 - Abschnitt A	
Anlage :	
Maßstab : 1: 250	


Projekt : Tennet A070	
Projektnr.: P012547 - Abschnitt A	
Anlage :	
Maßstab : 1: 250	

Projekt : Tennet A070	
Projektnr.: P012547 - Abschnitt A	
Anlage :	
Maßstab : 1: 250	

Projekt : Tennet A070	
Projektnr.: P012547 - Abschnitt A	
Anlage :	
Maßstab : 1: 250	

Projekt : Tennet A070	
Projektnr.: P012547 - Abschnitt A	
Anlage :	
Maßstab : 1:250	

236 / 6633EB015048

Ansatzpunkt: 362.70 m 0.0m Auffüllung, Fein- bis Mittelkies, stark sandig Α 2.0m rotgrau Fels, Sand, Sandstein, gering feinkiesig 8.0m Fels, Tonstein, sandig violettgrau 10.0m

rotgrau

<u></u> 350.00m Fels, Sandstein, gering feinkiesig rotgrau ∑ 348.00m 14.0m Fels, Sandstein, tonig, schluffig

.. .. rotbraun ∑ 346.00m 16.0m GW ▼ 346.20mNN ∑_344.00m Fels, Sandstein

20.0m 342.00m Fels, Tonstein, gering sandig rotgrau 22.0m 340.00m

Fels, Sandstein 338.00m rotgrau

∑ 362.00m

∑ ^{360.00m}

∑ ^{358.00m}

∑ ^{356.00m}

∑ ^{354.00m}

∑ 352.00m

334.00m

328.00m

322.00m

26.0m 336.00m

Fels, Sandstein 332.00m rötlichgrau

330.00m

326.00m Fels, Sandstein

34.0m

gelblich bis rötlichgrau 324.00m 40.0m

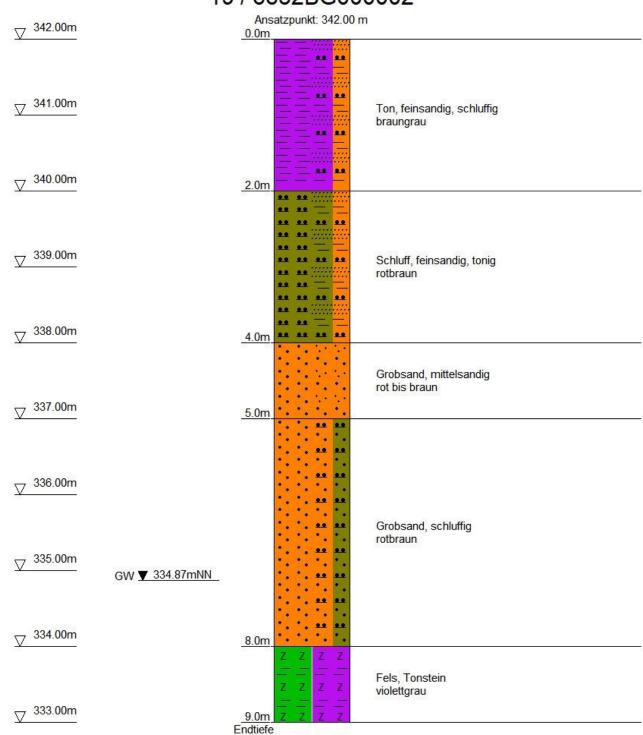
320.00m Fels, Sandstein

grau 318.00m 46.0m 316.00m Fels, Sandstein

∑ 314.00m grau 48.0m Fels, Sandstein grau 50.0m Endtiefe

Bohrungen bis 50m dargestellt

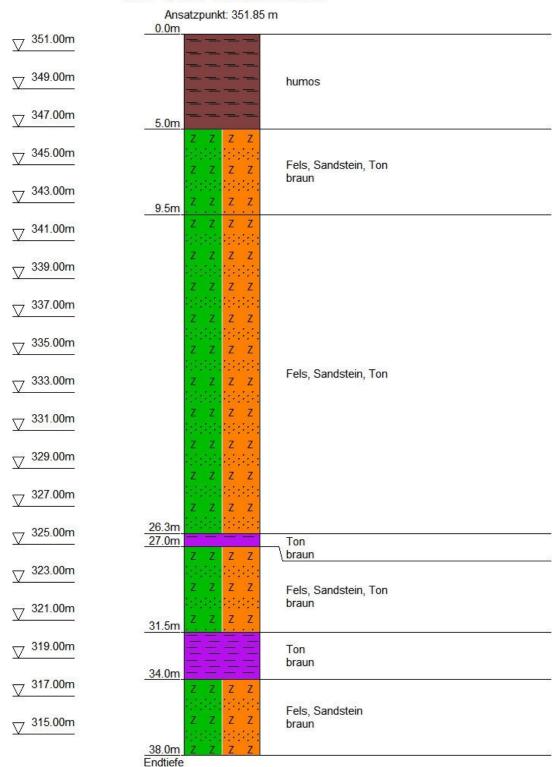
DC



ABSCHNITT A - ANHANG:

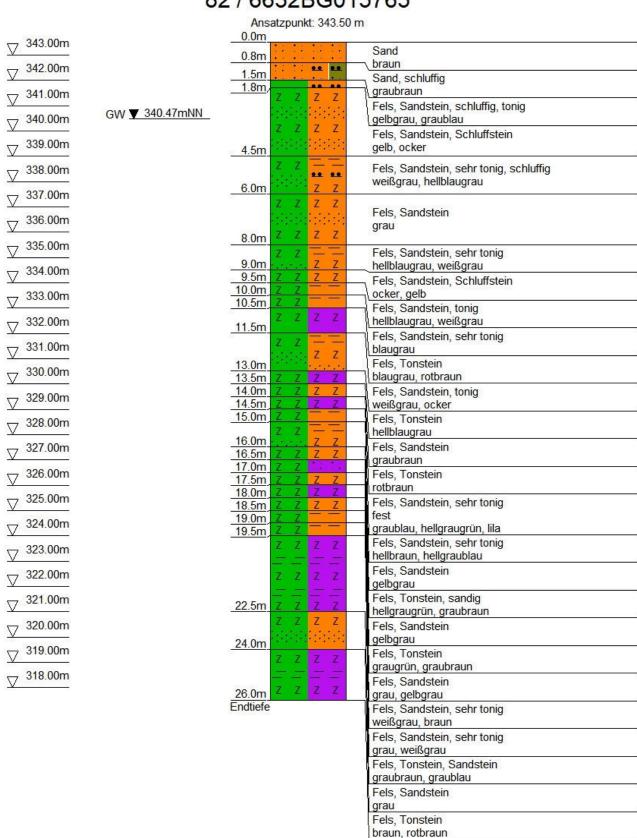
- 1 Planunterlagen
 - 1.1 Übersichtslageplan
 - 1.2 Digitales Geländemodell, Topographie, Maßstab 1 : 60.000
 - 1.3 Lage der Bohrungen, Maßstab 1: 30.000
 - 1.4 Überflutungsflächen, Maßstab 1: 30.000
 - 1.5 Geologische Karte, Maßstab 1: 30.000
 - 1.6 Bodendenkmäler, Altlasten, Maßstab 1: 30.000
 - 1.7 Georisiken, Maßstab 1: 30.000
 - 1.8 Hinweiskarte hohe Grundwasserstände, Maßstab 1: 30.000
 - 1.9 Luftbild mit Fotos, 1: 30.000
 - 1.10 Baugrundkarte mit Klassifizierung Masten nach Beeinträchtigung, Maßstab 1: 30.000
- 2 Fotodokumentation der Trassenbegehung
- 3 Archivbohrungen
 - 3.1 Liste der Archivbohrungen
 - 3.2 Bohrprofile Korridor 200m
 - 3.3 Bohrprofile Korridor 400m
 - 3.4 Bohrprofile Korridor 600m
 - 3.5 Bohrprofile Korridor >600m
- 4 Klassifizierung der Masten

Projekt : Tennet A070
Projektnr.: P012547 - Abschnitt A
Anlage :
Maßstab: 1:50

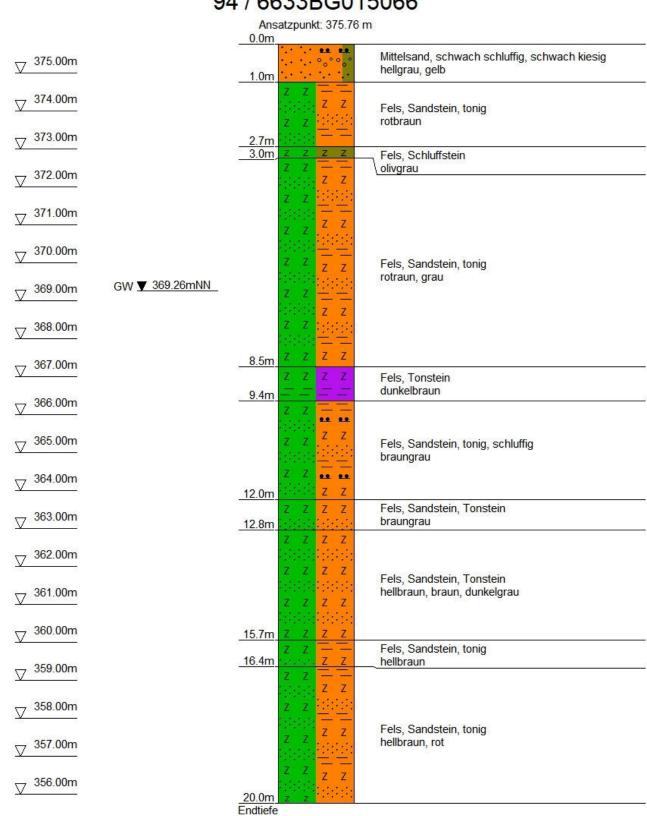


Projekt : Tennet A070	
Projektnr.: P012547 - Abschnitt A	
Anlage :	
Maßstab : 1:50	

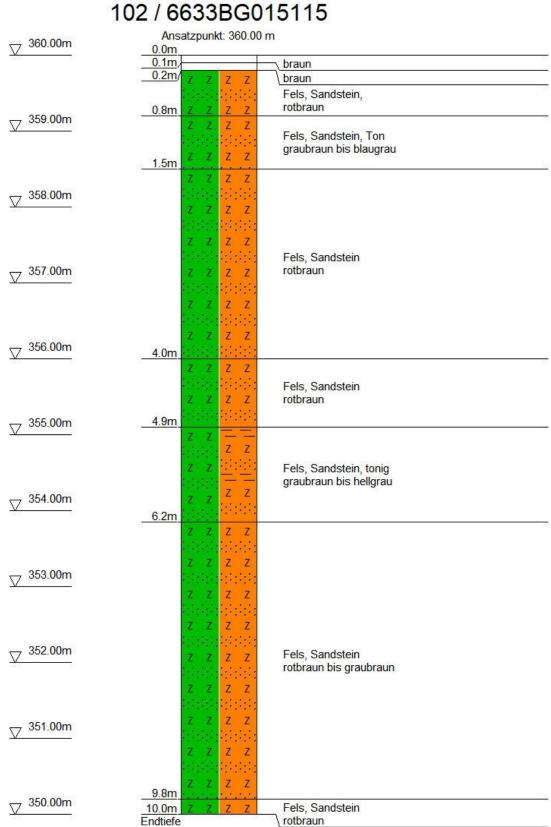
Projekt : Tennet A070	
Projektnr.: P012547 - Abschnitt A	
Anlage :	
Maßstab : 1: 200	

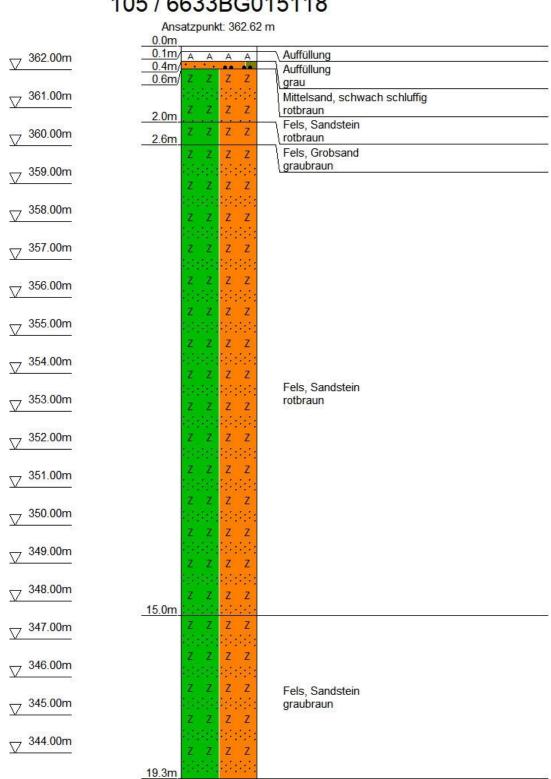

		The second second	net A070		
		Projektnr.: P012 Anlage :	2547 - Abschnitt A		
		Maßstab : 1:10	0		
	78 / 6632BG015755 Ansatzpunkt: 344.20 m				
∑ 344.00m		0.0m Mu Mu Mu Mu 1.0m	Mutterboden	-	
		Zv Zv Zv Zv Zv (2v 2v 2			
√ 341.00m		Zv Zv Zv Zv Zv	Fels,verwittert, Sandstein, locker		
<u> </u>		Z v Z v Z v Z v 4.5m			
		Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z			
√ 337.00m	GW ▼ 337.70mNN	Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z			
∑ 336.00m			Fels, Tonstein grau, weiß		
		$\begin{array}{c cccc} z & z & z & z \\ \hline z & \overline{z} & \overline{z} & \overline{z} \end{array}$			
∑ 333.00m					
√ 332.00m		11.7m Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z			
<u> </u>		Z Z Z Z			
		\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$			
√ 328.00m		Z Z Z Z 	Fels, Sandstein		
▽ 327.00m		VERSE CONTROL Z Z Z Z Z VERSE CONTROL Z	gelb, weiß		
∑ 326.00m		Z Z Z Z (((((((((((((((((((((((((((((((
		45858586458585858 Z Z Z 4585858585858585			
√ 323.00m		Z Z Z Z Z 21.0m			

Fels, Tonstein dunkelrot, braun

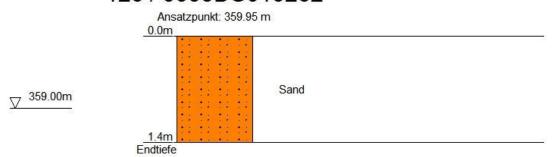

22.0m Endtiefe

DC

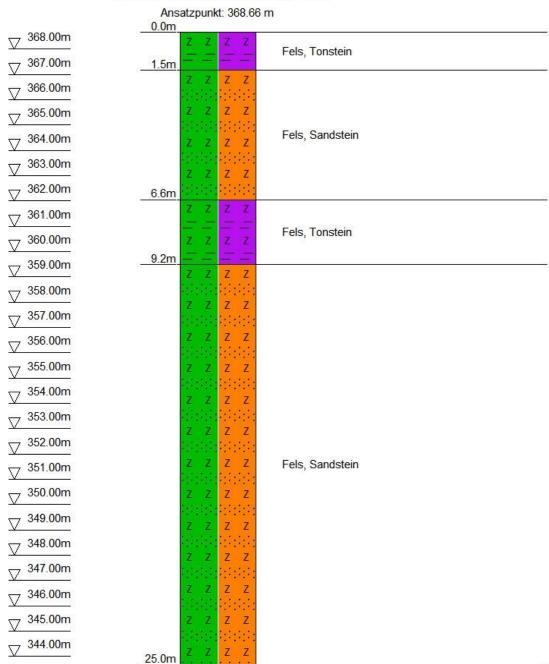

Projekt : Tennet A070	
Projektnr.: P012547 - Abschnitt A	
Anlage :	
Maßstab : 1: 150	


Projekt : Tennet A070	
Projektnr.: P012547 - Abschnitt A	8
Anlage :	
Maßstab : 1: 100	

Projekt : Tennet A070	
Projektnr.: P012547 - Abschnitt A	
Anlage :	
Maßstab : 1:50	

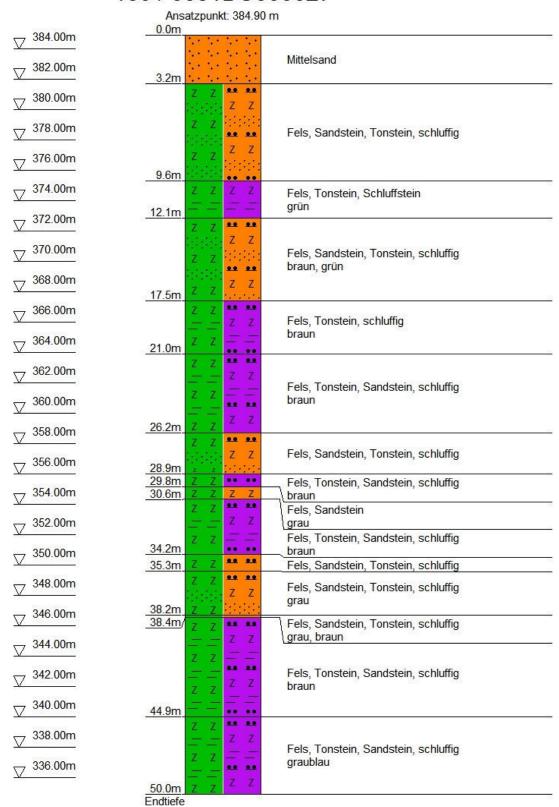


Projekt : Tennet A070	
Projektnr.: P012547 - Abschnitt A	
Anlage :	
Maßstab : 1: 100	

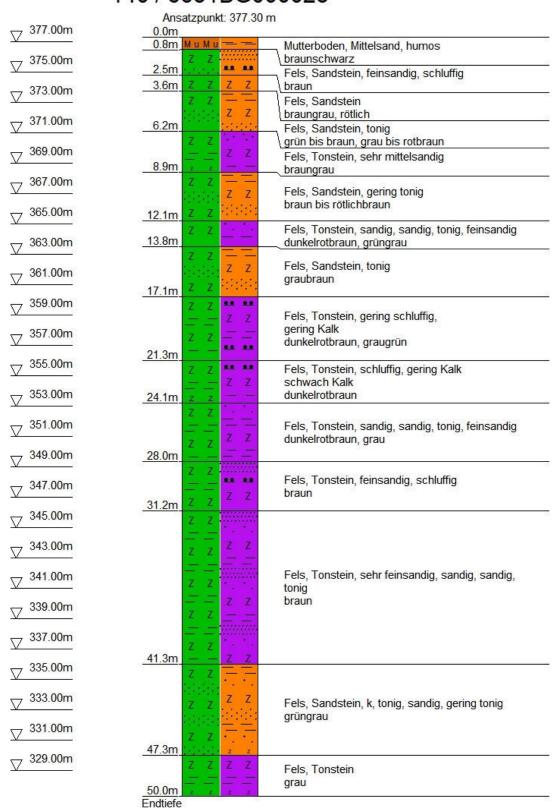


Endtiefe

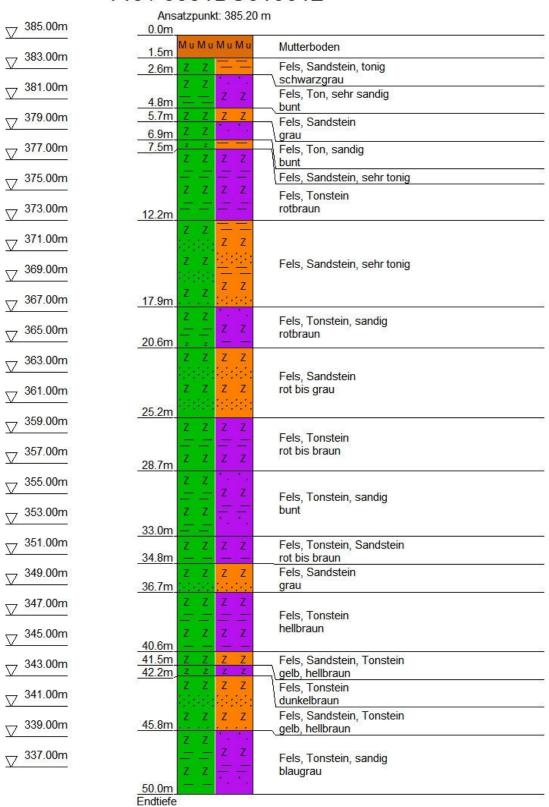
Projekt : Tennet A070	
Projektnr.: P012547 - Abschnitt A	
Anlage :	
Maßstab : 1:50	



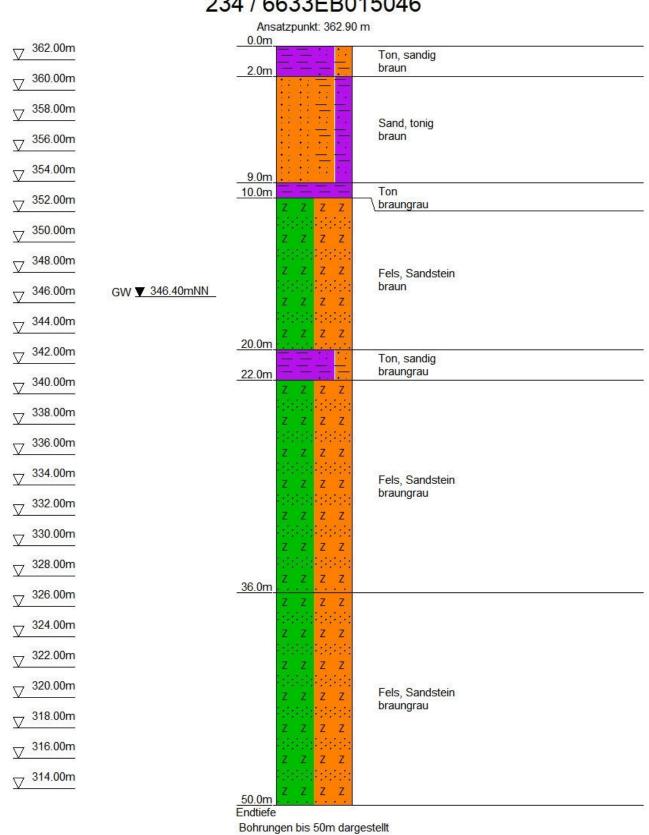
Projekt : Tennet A070	
Projektnr.: P012547 - Abschnitt A	
Anlage :	
Maßstab : 1: 150	



Endtiefe


Projekt : Tennet A070 ·	
Projektnr.: P012547 - Abschnitt A	-
Anlage :	
Maßstab : 1: 250	

Projekt : Tennet A070	
Projektnr.: P012547 - Abschnitt A	
Anlage :	
Maßstab : 1: 250	

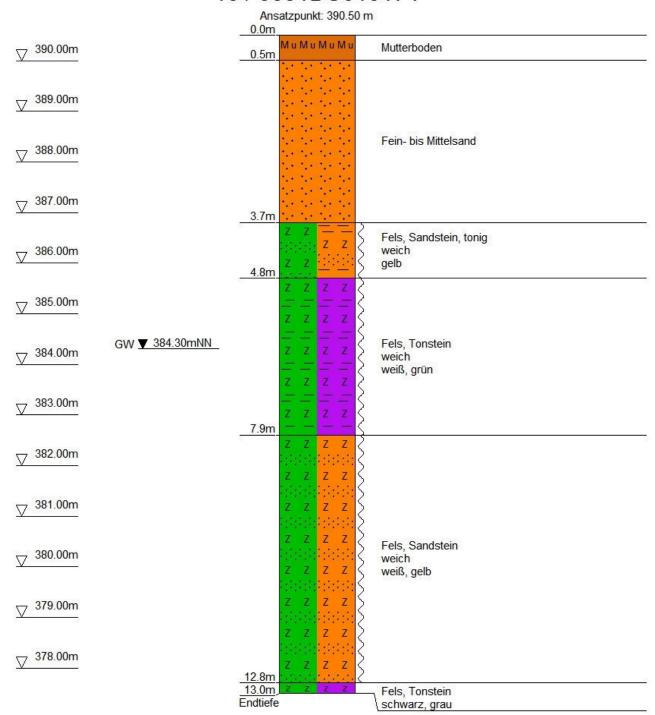


Projekt : Tennet A070	
Projektnr.: P012547 - Abschnitt A	
Anlage :	
Maßstab : 1: 250	

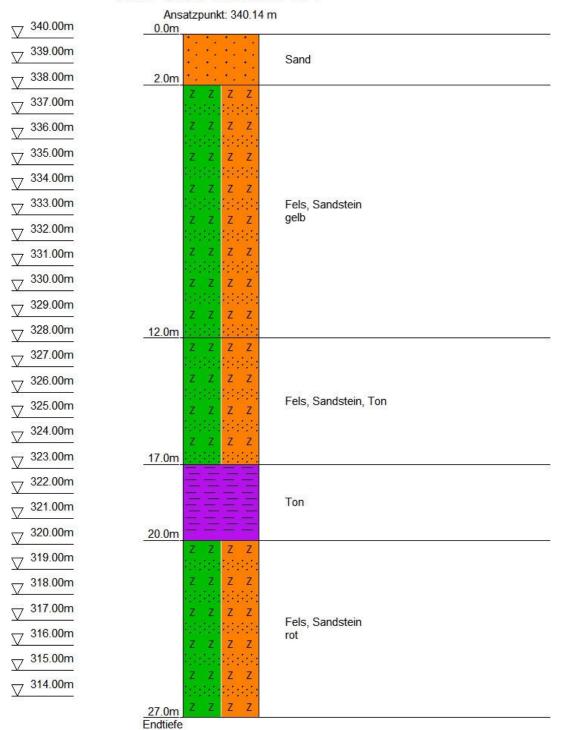
Projekt : Tennet A070
Projektnr.: P012547 - Abschnitt A
Anlage :
Maßstab : 1: 250

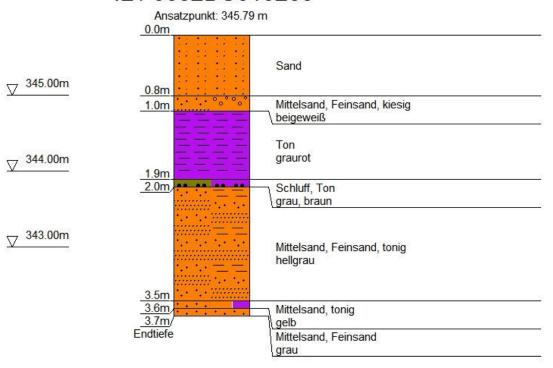


ABSCHNITT A - ANHANG:


- 1 Planunterlagen
 - 1.1 Übersichtslageplan
 - 1.2 Digitales Geländemodell, Topographie, Maßstab 1 : 60.000
 - 1.3 Lage der Bohrungen, Maßstab 1: 30.000
 - 1.4 Überflutungsflächen, Maßstab 1: 30.000
 - 1.5 Geologische Karte, Maßstab 1: 30.000
 - 1.6 Bodendenkmäler, Altlasten, Maßstab 1: 30.000
 - 1.7 Georisiken, Maßstab 1: 30.000
 - 1.8 Hinweiskarte hohe Grundwasserstände, Maßstab 1: 30.000
 - 1.9 Luftbild mit Fotos, 1: 30.000
 - 1.10 Baugrundkarte mit Klassifizierung Masten nach Beeinträchtigung, Maßstab 1: 30.000
- 2 Fotodokumentation der Trassenbegehung
- 3 Archivbohrungen
 - 3.1 Liste der Archivbohrungen
 - 3.2 Bohrprofile Korridor 200m
 - 3.3 Bohrprofile Korridor 400m
 - 3.4 Bohrprofile Korridor 600m
 - 3.5 Bohrprofile Korridor >600m
- 4 Klassifizierung der Masten

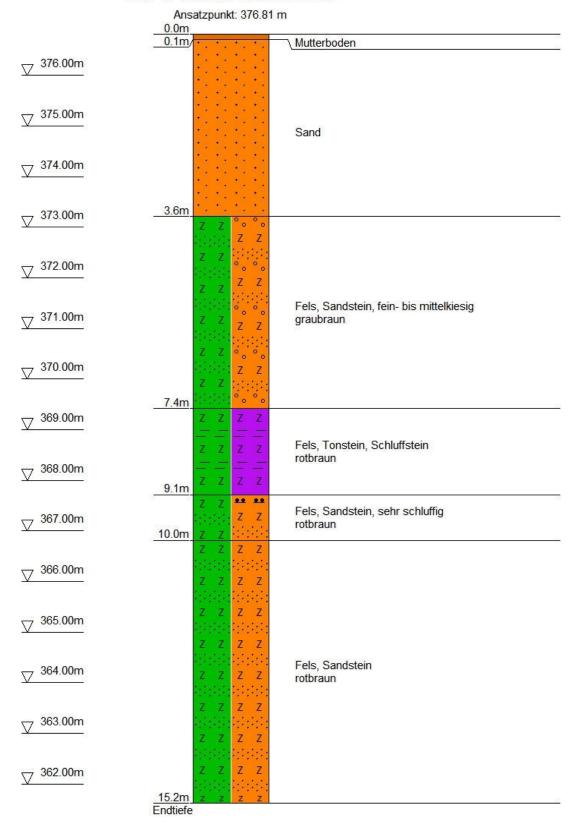
Projekt : Tennet A070	
Projektnr.: P012547 - Abschnitt A	
Anlage :	
Maßstab : 1:200	


Projekt : Tennet A070	
Projektnr.: P012547 - Abschnitt A	
Anlage :	
Maßstab : 1:75	

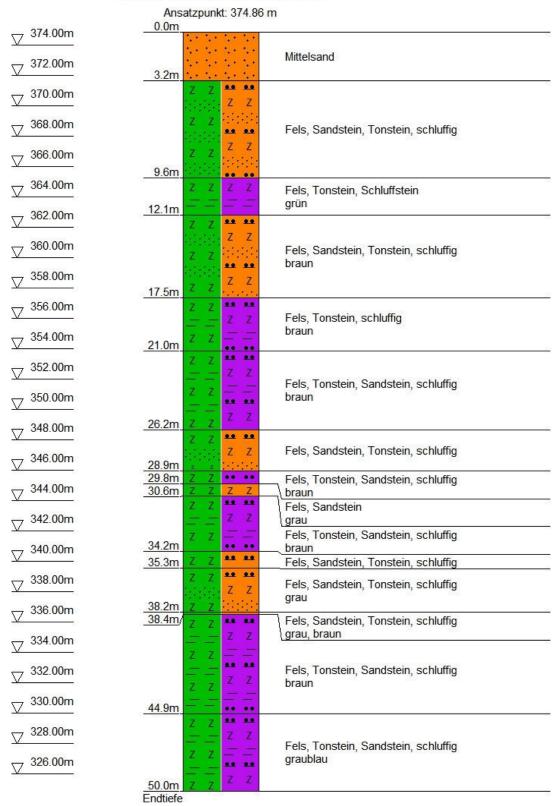

Projekt : Tennet A070
Projektnr.: P012547 - Abschnitt A
Anlage :
Maßstab : 1:150

Projekt : Tennet A070	
Projektnr.: P012547 - Abschnitt A	
Anlage :	
Maßstab : 1: 150	

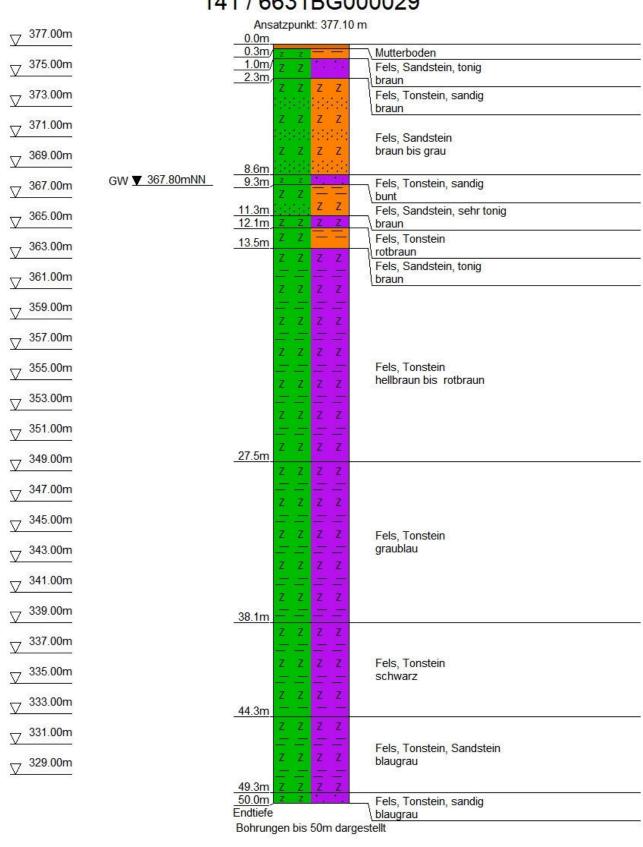
Projekt : Tennet A070	
Projektnr.: P012547 - Abschnitt A	-
Anlage :	
Maßstab : 1:50	



Projekt : Tennet A070	
Projektnr.: P012547 - Abschnitt A	
Anlage :	
Maßstab: 1:150	


Ansatzpunkt: 340.80 m

	0.0m	
∑ 340.00m	0.6m M u M u M u M u	Mutterboden
∑ 339.00m	Zv Zv Zv Zv	
▽ 338.00m	Zv Zv Zv Zv	
√ 337.00m	Zv Zv Zv Zv	Fels,verwittert, Fein- bis Mittelsand
√ 336.00m	Zv Zv Zv Zv	
√ 335.00m	5.7m ··· ···	
▽ 334.00m	Z Z Z Z	Fels, Tonstein
√ 333.00m	7.6m Z Z Z Z	türkis
→ 332.00m	Z Z	Fels, Sandstein
∑ 331.00m	9.5m Z Z Z Z	
∑ 330.00m	z z z z <u></u>	
∑ 329.00m	Z Z Z Z	
	3.30mNN Z Z Z Z	
∑ 327.00m	z z z <u>z z </u>	Fels, Tonstein
<u> </u>		weich lila, grau, türkis
<u> </u>	==== }	, ,
∑ 324.00m	Z Z Z Z Z Z S	
<u> </u>	<u>z z z z</u> <u></u>	
<u> </u>	19.0m Z Z Z Z	
∑ 321.00m	ZZZZ	
∑ 320.00m	Z Z Z Z	
∑ 319.00m		
∑ 318.00m	likirini {	Fels, Sandstein weich
∑ 317.00m	Z	
∑ 316.00m	Z Z Z Z	
∑ 315.00m	26.0m Z Z Z Z	
∑ 314.00m	27.0m Z Z Z Z Endtiefe	Fels, Tonstein rot, braun


Projekt : Tennet A070	
Projektnr.: P012547 - Abschnitt A	
Anlage :	
Maßstab: 1:75	

Projekt : Tennet A070	
Projektnr.: P012547 - Abschnitt A	
Anlage :	
Maßstab : 1: 250	

Projekt : Tennet A070	
Projektnr.: P012547 - Abschnitt A	
Anlage :	
Maßstab : 1: 250	

Projekt : Tennet A070	
Projektnr.: P012547 - Abschnitt A	
Anlage :	
Maßstab : 1: 250	

ABSCHNITT A - ANHANG:

- 1 Planunterlagen
 - 1.1 Übersichtslageplan Maßstab 1 : 60.000
 - 1.2 Digitales Geländemodell, Topographie, Maßstab 1 : 60.000
 - 1.3 Lage der Bohrungen, Maßstab 1: 30.000
 - 1.4 Überflutungsflächen, Maßstab 1: 30.000
 - 1.5 Geologische Karte, Maßstab 1: 30.000
 - 1.6 Bodendenkmäler, Altlasten, Maßstab 1: 30.000
 - 1.7 Georisiken, Maßstab 1: 30.000
 - 1.8 Hinweiskarte hohe Grundwasserstände, Maßstab 1: 30.000
 - 1.9 Luftbild mit Fotos, 1: 30.000
 - 1.10 Baugrundkarte mit Klassifizierung Masten nach Beeinträchtigung, Maßstab 1: 30.000
- 2 Fotodokumentation der Trassenbegehung
- 3 Archivbohrungen
 - 3.1 Liste der Archivbohrungen
 - 3.2 Bohrprofile Korridor 200m
 - 3.3 Bohrprofile Korridor 400m
 - 3.4 Bohrprofile Korridor 600m
 - 3.5 Bohrprofile Korridor >600m
- 4 Klassifizierung der Masten

	Klassifizierung der Masten - Abschnitt A							
Masten	Bodendenkmmäler (im Bereich Masten, Kapitel 6)	Altlasten (im Bereich Masten, Kapitel 7)	Georisiken (Kapitel 8)	Überflutungsbereiche (Korridor [m], Kapitel 8.1)	auffällige Topographie (Kapitel 9.1)	potentiell hohe Grund-wasserstände (Kapitel 9.2.2.)	prognostizierte Tragfähigkeit (Kapitel 9.2.3)	prognostizierte Fundamentart (*abhängig von Erkundung, Kapitel 9.2.3)
400	-	-	-	-	-	-	mittel bis hoch	flach
401	-	-	-	-	-	-	mittel bis hoch	flach
402	-	-	-	-	-	ja	mittel bis hoch	flach
410	-	-	-	-	-	- -	mittel bis hoch	flach
420	_	-	-	-	-	-	mittel bis hoch	flach
421	_	_	_	_	_	_	mittel bis hoch	flach
430	_	_	-	_	_	-	mittel bis hoch	flach
431	_	_	_	_	-	-	hoch bis sehr hoch	flach
440	-	_	_	_	_	-	hoch bis sehr hoch	flach
441							hoch bis sehr hoch	flach
450	-	-		-	-		hoch bis sehr hoch	flach
	-	-	-	-	-	-		
451	-	-	-	-	-	-	hoch bis sehr hoch	flach
452	-	-	-	-	-	-	hoch bis sehr hoch	flach
460		-	-	-	-	-	hoch bis sehr hoch	flach
470	-	-	-	-	ja	-	mittel bis hoch	flach
471	-	-	-	-	ja	-	mittel bis hoch	flach
472	-	-	-	-	-	-	mittel bis hoch	flach
473	-	-	-	-	-	-	hoch bis sehr hoch	flach
474	-	-	-	-	-	-	hoch bis sehr hoch	flach
475	-	-	-	-	-	-	hoch bis sehr hoch	flach
100	-	-	-	-	-	-	hoch bis sehr hoch	flach
101	-	-	-	-	-	-	gering bis mittel	flach / tief*
102	-	-	-	-	-	-	hoch bis sehr hoch	flach
103	-	-	-	-	-	-	hoch bis sehr hoch	flach
104	-	-	ı	ı	ı	ı	mittel bis hoch	flach
110	-	-	1	-	-	-	mittel bis hoch	flach
120	-	-	-	-	-	-	hoch bis sehr hoch	flach
121	-	-	-	-	-	-	hoch bis sehr hoch	flach
130	-	-	-	-	-	-	mittel bis hoch	flach
131	-	-	-	-	-	-	mittel bis hoch	flach
140	-	-	-	-	-	-	mittel bis hoch	flach
141	-	-	-	-	-	-	mittel bis hoch	flach
142	-	-	-	-	-	-	mittel bis hoch	flach
150	-	-	-	-	-	-	mittel bis hoch	flach
151	-	-	-	-	-	-	mittel bis hoch	flach
200	-	-	-	-	-	-	mittel bis hoch	flach
201	_	_	_	_	_	-	mittel bis hoch	flach
201	_	_					THILLET DIS HOUT	Hach

	Klassifizierung der Masten - Abschnitt A							
Masten	Bodendenkmmäler (im Bereich Masten, Kapitel 6)	Altlasten (im Bereich Masten, Kapitel 7)	Georisiken (Kapitel 8)	Überflutungsbereiche (Korridor [m], Kapitel 8.1)	auffällige Topographie (Kapitel 9.1)	potentiell hohe Grund- wasserstände (Kapitel 9.2.2.)	prognostizierte Tragfähigkeit (Kapitel 9.2.3)	prognostizierte Fundamentart (*abhängig von Erkundung, Kapitel 9.2.3)
210	-	-	-	-	-	-	mittel bis hoch	flach
211	-	-	-	-	-	-	mittel bis hoch	flach
212	-	-	-	-	-	-	mittel bis hoch	flach
213	-	-	-	-	-	-	mittel bis hoch	flach
220	-	-	-	-	-	-	mittel bis hoch	flach
230	-	_	-	_	-	-	mittel bis hoch	flach
300	_	_	_	_	_	ja	mittel bis hoch	flach
301	-	ja	-	_	-	- -	mittel bis hoch	flach
999	_	- -	_	_	_	-	mittel bis hoch	flach
Erdkabel	-	_	_	alle	_	ja	-	- Inden
994	_	_	-	-	_	- -	hoch bis sehr hoch	flach
500	-		-	-			hoch bis sehr hoch	flach
	-	-	-	-		-		
501	-	-	-	-	-	-	hoch bis sehr hoch	flach
502	-	-	-	-	-	ja	hoch bis sehr hoch	flach
503	-	-	-	-	-	ja	hoch bis sehr hoch	flach
510	-	-	-	-	-	ja	hoch bis sehr hoch	flach
520	-	-	-	-	-	-	hoch bis sehr hoch	flach
521	-	-	-	-	-	-	hoch bis sehr hoch	flach
530	-	-	-	-	-	-	hoch bis sehr hoch	flach
531	-	-	-	-	-	-	hoch bis sehr hoch	flach
540	-	-	-	-	-	-	gering bis mittel	flach / tief*
541	-	-	-	-	-	-	hoch bis sehr hoch	flach
542	-	-	-	-	-	-	hoch bis sehr hoch	flach
610	-	-	-	-	-	-	hoch bis sehr hoch	flach
611	-	-	-	-	-	ja	hoch bis sehr hoch	flach
612	-	-	-	-	-	-	mittel bis hoch	flach
620	-	-	-	-	-	-	hoch bis sehr hoch	flach
621	-	-	-	-	-	-	hoch bis sehr hoch	flach
630	-	-	-	-	-	-	hoch bis sehr hoch	flach
631	-	-	-	-	-	-	hoch bis sehr hoch	flach
632	-	-	-	-	-	-	hoch bis sehr hoch	flach
640	-	-	-	-	-	-	hoch bis sehr hoch	flach
650	-	-	-	-	-	-	mittel bis hoch	flach
651	-	-	-	-	-	-	hoch bis sehr hoch	flach
652	-	_	-	-	-	-	hoch bis sehr hoch	flach
660	-	-	-	-	-	-	hoch bis sehr hoch	flach
661	-	_	-	-	-	-	hoch bis sehr hoch	flach

Klassifizierung der Masten - Abschnitt A								
Masten	Bodendenkmmäler (im Bereich Masten, Kapitel 6)	Altlasten (im Bereich Masten, Kapitel 7)	Georisiken (Kapitel 8)	Überflutungsbereiche (Korridor [m], Kapitel 8.1)	auffällige Topographie (Kapitel 9.1)	potentiell hohe Grund- wasserstände (Kapitel 9.2.2.)	prognostizierte Tragfähigkeit (Kapitel 9.2.3)	prognostizierte Fundamentart (*abhängig von Erkundung, Kapitel 9.2.3)
670	-	-	ı	ı	ı	ı	hoch bis sehr hoch	flach
671	-	-	ı	ı	ı	ı	hoch bis sehr hoch	flach
672	-	-	ı	ı	ı	ı	hoch bis sehr hoch	flach
680	-	-	-	-	-	-	hoch bis sehr hoch	flach
681	-	-	-	-	-	ja	hoch bis sehr hoch	flach
682	-	-	-	-	-	-	mittel bis hoch	flach
690	-	-	-	-	-	-	gering	tief
691	-	-	-	-	-	-	gering bis mittel	flach / tief*
692	-	-	-	-	-	ja	gering bis mittel	flach / tief*
700	-	-	-	-	-	ja	mittel bis hoch	flach
701	-	-	-	-	-	-	mittel bis hoch	flach
710	-	-	-	-	-	-	mittel bis hoch	flach
711	-	-	-	-	-	-	mittel bis hoch	flach
720	-	-	-	-	-	-	mittel bis hoch	flach
721	-	-	-	-	-	-	mittel bis hoch	flach
730	-	-	-	-	-	-	mittel bis hoch	flach
731	-	-	-	-	-	-	mittel bis hoch	flach
732	-	-	-	-	-	-	gering bis mittel	flach / tief*
740	-	-	-	-	-	-	gering bis mittel	flach / tief*
750	-	-	-	-	-	-	mittel bis hoch	flach
760	-	-	ı	ı	ı	ı	mittel bis hoch	flach