Raitersaich – Ludersheim – Sittling – Altheim 380-kV-Ersatzneubauprojekt

Juraleitung

Ltg.-Abschnitt A-Katzwang Raitersaich\_West - Ludersheim\_West
(LH-07-B170)

# Planfeststellungsunterlage

# Unterlage 12.3 Statik Kabelschutzrohranlage

Antragsteller:



**TenneT TSO GmbH** 

Bernecker Straße 70 95448 Bayreuth Bearbeitung:



Ingenieurgemeinschaft Katzwangtunnel c/o SWECO GmbH

Hanauer Landstraße 135 - 137 60314 Frankfurt am Main



| Aufgestellt: | TenneT TSO GmbH                              | Bayreuth, den   |
|--------------|----------------------------------------------|-----------------|
|              |                                              |                 |
|              | gez. i.V. J. Gotzler gez. i.V. A. Junginger  | 30.04.2025      |
| Bearbeitung: | IGKWT – Ingenieurgemeinschaft Katzwangtunnel |                 |
|              | gez. i.V. D. Edelhoff (Projektleitung)       |                 |
| Anlagen zum  |                                              |                 |
| Dokument     |                                              |                 |
| Änderungs-   | Änderung:                                    | Änderungsdatum: |
| historie:    |                                              |                 |
|              |                                              |                 |
|              |                                              |                 |
|              |                                              |                 |
|              |                                              |                 |
|              |                                              |                 |

# **Statische Berechnung**

Bauvorhaben: A 070 "Juraleitung" Teilabschnitt Katzwang

Erdverkabelungsabschnitt Wolkersdorf - Katzwang Abschnitt: Straßenquerung (Haimendorfstrasse) Baufeld: West / Wolkersdorf Beschreibung:

Auftraggeber: TenneT TSO GmbH

Bernecker Str. 70 95448 Bayreuth

Ingenieurgemeinschaft Katzwangtunnel (IGKWT) Moll-prd GmbH & Co. KG Bearbeiter:

Weststraße 2

57392 Schmallenberg

Dipl.-Ing. (FH) Philipp Dick

Statik-Nr.: 80-23-0269, Entwurfsstatik Erdkabelabschnitt, Straße

Datum: 22.01.2025

1

# Inhaltsangabe

| Statik nach ATV-DVWK-A 127, 3.Auflage: Entwurfsstatik der Kabelschutzrohre im rdverlegten Abschnitt Wolkersdorf                           | 4        |
|-------------------------------------------------------------------------------------------------------------------------------------------|----------|
| 1.1 Eingaben                                                                                                                              | 4        |
| 1.1.1 Sicherheiten                                                                                                                        | 4        |
| 1.1.2 Boden                                                                                                                               | 4        |
| 1.1.3 Belastung                                                                                                                           | 4        |
| 1.1.4 Einbau                                                                                                                              | 5        |
| 1.1.5 Vollwand/Profil-Rohr                                                                                                                | 5        |
| 1.1.5.1 Thermoplast                                                                                                                       | 5        |
| 1.2 Ergebnisse                                                                                                                            | 7        |
| 1.2.1 Zwischenergebnisse Rohr                                                                                                             | 7        |
| 1.2.1.1 Materialeigenschaften                                                                                                             | 7        |
| 1.2.1.2 Sicherheiten<br>1.2.1.3 Mindestgrabenbreite nach DIN EN 1610:2015-12                                                              | 7<br>7   |
| 1.2.2 Zwischenergebnisse bei minimalem Grundwasser                                                                                        | 7        |
| 1.2.2.1 Silotheorie                                                                                                                       | 7        |
| 1.2.2.2 Belastung<br>1.2.2.3 Boden-Verformungsmoduln EB                                                                                   | 7<br>7   |
| 1.2.2.4 Bodensteifigkeiten                                                                                                                | 8        |
| 1.2.2.5 Einfluss der Unterrammung<br>1.2.2.6 Auflagerwinkel, wirksame Ausladung und Reibungswinkel                                        | 8<br>8   |
| 1.2.2.7 Rohrwerkstoffkennwerte und Ringsteifigkeit                                                                                        | 8        |
| 1.2.2.8 Steifigkeitsverhältnisse                                                                                                          | 8        |
| 1.2.2.9 Beiwerte<br>1.2.2.10 Konzentrationsfaktoren λR und λΒ                                                                             | 8<br>8   |
| 1.2.2.11 Druckverteilung am Rohrumfang                                                                                                    | 9        |
| 1.2.3 Zwischenergebnisse bei maximalem Grundwasser                                                                                        | 9        |
| 1.2.3.1 Silotheorie<br>1.2.3.2 Belastung                                                                                                  | 9        |
| 1.2.3.3 Boden-Verformungsmoduln EB                                                                                                        | 9        |
| 1.2.3.4 Bodensteifigkeiten 1.2.3.5 Einfluss der Unterrammung                                                                              | 9<br>9   |
| 1.2.3.6 Auflagerwinkel, wirksame Ausladung und Reibungswinkel                                                                             | 9        |
| 1.2.3.7 Rohrwerkstoffkennwerte und Ringsteifigkeit                                                                                        | 10       |
| 1.2.3.8 Steifigkeitsverhältnisse<br>1.2.3.9 Beiwerte                                                                                      | 10<br>10 |
| 1.2.3.10 Konzentrationsfaktoren λR und λB                                                                                                 | 10       |
| 1.2.3.11 Druckverteilung am Rohrumfang 1.2.4 Schnittkräfte                                                                                | 10       |
| 1.2.4.1 Schnittkräfte bei minimalem Grundwasser. Kurzzeit                                                                                 | 10<br>10 |
| 1.2.4.2 Schnittkräfte bei minimalem Grundwasser, Langzeit                                                                                 | 11       |
| 1.2.4.3 Schnittkräfte bei maximalem Grundwasser, Kurzzeit 1.2.4.4 Schnittkräfte bei maximalem Grundwasser, Langzeit                       | 11<br>12 |
| 1.2.5 Nachweise Kurzzeit                                                                                                                  | 12       |
| 1.2.5.1 Spannungsnachweis (bei minimalem Grundwasser)                                                                                     | 12       |
| 1.2.5.2 Spannungsnachweis (bei maximalem Grundwasser)                                                                                     | 13       |
| <ul><li>1.2.5.3 Verformungsnachweis (bei minimalem Grundwasser)</li><li>1.2.5.4 Verformungsnachweis (bei maximalem Grundwasser)</li></ul> | 13<br>14 |

| 1.2.6 Nachweise Langzeit                                                     | 14 |
|------------------------------------------------------------------------------|----|
| 1.2.6.1 Spannungsnachweis (bei minimalem Grundwasser)                        | 14 |
| 1.2.6.2 Spannungsnachweis (bei maximalem Grundwasser)                        | 15 |
| 1.2.6.3 Verformungsnachweis (bei minimalem Grundwasser)                      | 15 |
| 1.2.6.4 Verformungsnachweis (bei maximalem Grundwasser)                      | 16 |
| 1.2.6.5 Nachweis Stabilität radial, linear (bei maximalem Grundwasser)       | 16 |
| 1.2.6.6 Stabilitätsnachweis, nichtlinear (bei minimalem Grundwasser)         | 17 |
| 1.2.6.7 Stabilitätsnachweis, nichtlinear (bei maximalem Grundwasser)         | 17 |
| 1.2.6.8 Nachweis der Sicherheit gegen Versagen bei nicht vorwiegend ruhender | 17 |
|                                                                              |    |

# 1 Statik nach ATV-DVWK-A 127, 3. Auflage: Entwurfsstatik der Kabelschutzrohre im erdverlegten Abschnitt Wolkersdorf

Titel der Teilstatik: Entwurfsstatik der Kabelschutzrohre im erdverlegten Abschnitt Wolkersdorf

Annahmen: Die Vordimensionierung erfolgte auf Basis folgender Annahmen:

- Verlegung der Kabelschutzrohre im Regelgraben, verbaut

- Mindestdurchmesser entsprechend Handbuch Bauen und Errichten, Kapitel 2.2.1.1.7: 253 mm
- nachzuweisende Kabelschutzrohre DA 315, SDR 17
- Belastung der Kabelschutzrohre durch Befahrung, SLW 60, im Bau- und Betriebszustand
- zusätzliche Flächenlast durch Zwischenlagerung Aushub
- keine Abminderung der Standfestigkeit aufgrund der Kabeltemperatur im Betriebszustand, da
- Rohre mit erhöhter Temperaturbeständigkeit eingesetzt werden. - Grabenbreite in Scheitelhöhe angenommen mit 1,5 m
- Baugrundinformationen aus Bericht Dr. Spang, 13.06.2024
- anstehender Boden: Schicht 2.2, Verwitterungsboden, gemischtkörnig

Schlussfolgerungen: Die Nachweise für den Bau- und Betriebszustand für die Kabelschuztrohre, DA 315, werden unter

Berücksichtigung vorstehender Annahmen erbracht.

Vollwand-/Profilrohr Berechnungsart:

Skizzen (Einbau/Rohr) in Ausdruck: Ja

# 1.1 Eingaben

#### 1.1.1 Sicherheiten

Sicherheitsklasse: A (Regelfall)

Ohne Vorverformungen (2,5 / 2,0) Sicherheit Stabilität nach Tabelle 13: 6% (Regelfall)

Zulässige Verformung:

Behandlung von Innendruck: Gemäß Fußnote des ATV-DVWK-A 127 Kleinere Biegedruck-Sicherheiten:

G1

Nein (ATV-DVWK-A 127) Nachweis bei nicht vorwiegend ruhender Belastung: Nach Regelwerk

Berücksichtigung von dyn pvh\*: Nach Norm

Berücksichtigung der Vorverformungen Typ A in Verformungsnachweis:

ATV-DVWK-A 127:2000 (nach Behandlung Systemsteifigkeit VRB nach:

Rechenwert)

Rohrsteifigkeit nach Regelwerk:

### 1.1.2 **Boden**

Bodengruppe Verfüllung:

Berechnung E1: Tabelle 8 (A127)

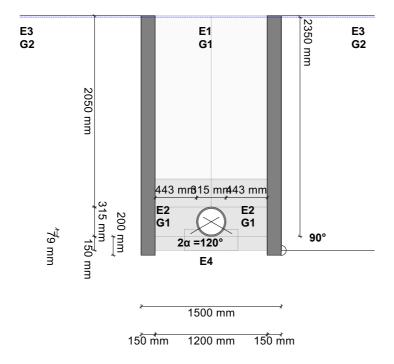
Bodengruppe Einbettung:

Berechnung E20: Tabelle 8 (A127) Bodengruppe anstehender Boden: G2

Berechnung E3: E-Modul F3 25.00 E-Modul E3:

N/mm<sup>2</sup> E4 = 10 · E1: Ja

Anwendung von Silotheorie: Nein K2 nach Norm: Ja


| 1.1.3 Belastung                                                   |                       |       |       |
|-------------------------------------------------------------------|-----------------------|-------|-------|
| Überdeckungshöhe:                                                 | h                     | 2,05  | m     |
| Minimaler Grundwasserstand über Sohle:                            | hw, <sub>min</sub>    | 0,00  | m     |
| Maximaler Grundwasserstand über Sohle:                            | h <sub>W,max</sub>    | 2,35  | m     |
| Auftriebsnachweis führen:                                         | Nein                  |       |       |
| Wichte des Bodens:                                                | γв                    | 20,0  | kN/m³ |
| Manuelle Angabe der Wichte des Bodens unter Auftrieb:             | Nein                  |       |       |
| Zusätzliche Flächenlast:                                          | p <sub>0</sub>        | 40,0  | kN/m² |
| Zusätzliche Flächenlast ist Dammschüttung:                        | Nein                  |       |       |
| Innendruck, kurzzeitig wirkend:                                   | P <sub>I,K</sub>      | 0,00  | bar   |
| Innendruck, langzeitig:                                           | Pı,L                  | 0,00  | bar   |
| Wasserfüllung (z.B. Staukanal):                                   | Nein                  |       |       |
| Verkehrslast:                                                     | Straße SLW 60         | 0.00  | 0/    |
| Ansatz horizontaler Belastungen aus Verkehr im Ermüdungsnachweis: | $\alpha_{qhT,dyn}$    | 0,00  | %     |
| 1.1.4 Einbau                                                      |                       |       |       |
| Einbauweise:                                                      | Graben                |       |       |
| Grabenbreite in Scheitelhöhe:                                     | b                     | 1,50  | m     |
| Mindestgrabenbreite prüfen:                                       | Nein                  | 1,00  | •••   |
| Stärke der Bettungsschicht automatisch ermitteln:                 | Ja                    |       |       |
| Böschungswinkel:                                                  | ß                     | 90    | 0     |
| Überschüttungsbedingung:                                          | A2                    |       |       |
| Einbettungsbedingung:                                             | B2                    |       |       |
| Berücksichtigung der Unterrammung nach Bericht der ATV-AG 1.5.5.: | Ja                    |       |       |
| Tiefe der Unterrammung:                                           | ts                    | 0,20  | m     |
| Beiwert kS automatisch ermitteln:                                 | Ja                    |       |       |
| Dicke des Verbaus (einseitig):                                    | bs                    | 0,15  | m     |
| Auflagerart:                                                      | Lose                  |       |       |
| Auflagerwinkel:                                                   | 120°                  |       |       |
| Relative Ausladung automatisch ermitteln:                         | Ja                    |       |       |
| Untere Sockelhöhe vorgeben:                                       | Ja                    |       |       |
| Höhe des unteren Teils des Sockels:                               | h <sub>s,u</sub>      | 0,150 | m     |
| 1.1.5 Vollwand/Profil-Rohr                                        |                       |       |       |
| Rohrauswahl:                                                      | Vollwand              |       |       |
| Material-Klasse:                                                  | Thermoplast           |       |       |
| Vorverformung Typ A:                                              | $\delta_{V,A}$        | 1,0   | %     |
| Lokale Vorverformung:                                             | $\delta_{\text{V,I}}$ | 0,0   | %     |
| Auswahl der Eingaben:                                             | Da und s              |       |       |
| Außendurchmesser:                                                 | da                    | 315,0 | mm    |
| Wandstärke:                                                       | S                     | 18,7  | mm    |
| Perforation:                                                      | Ohne Perforation      | า     |       |
| 1.1.5.1 Thermoplast                                               |                       |       |       |

# 1.1.5.1 Thermoplast

Auswahl Material:

Nach ATV / DWA PE-HD Keine Material:
Grund der Abminderung:

# Verkehrslast: Straße SLW 60 + 40,0 kN/m²



# 1.2 Ergebnisse

| 1.2.1 Zwischenergebnisse Rohr                                                                                                                                                            |                                                                       |                                                                                            |                                                              |                                             |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|--------------------------------------------------------------------------------------------|--------------------------------------------------------------|---------------------------------------------|
| Innendurchmesser: Außendurchmesser: Mittlerer Radius: Wanddicke: Verhältnis Radius zu Wanddicke: Korrekturfaktor Krümmung innen: Korrekturfaktor Krümmung außen:                         |                                                                       | di<br>da<br>r <sub>m</sub><br>s<br>r <sub>m</sub> /s<br>α <sub>ki</sub><br>α <sub>ka</sub> | 277,6<br>315,0<br>148,15<br>18,70<br>7,922<br>1,042<br>0,958 | mm<br>mm<br>mm<br>[-]<br>[-]                |
| Lokale Vorverformung:<br>Vorverformung (Ovalisierung vor Last):                                                                                                                          |                                                                       | $\begin{array}{l} \delta_{V,I} \\ \delta_{V,A} \end{array}$                                | 0,00<br>1,00                                                 | %<br>%                                      |
| Radiale Profilfläche: Trägheitsabstand: Trägheitsmoment: Äußeres Widerstandsmoment: Inneres Widerstandsmoment: Flächenverhältnis:                                                        |                                                                       | A <sub>rad</sub><br>e<br>I<br>Wa<br>Wi<br>KQ                                               | 18,70<br>9,35<br>544,93<br>58,28<br>58,28<br>1,2             | mm²/mm<br>mm<br>mm^4/mm<br>mm³/mm<br>mm³/mm |
| 1.2.1.1 Materialeigenschaften                                                                                                                                                            |                                                                       |                                                                                            |                                                              |                                             |
| Wichte des Rohrwerkstoffs<br>Querkontraktionszahl<br>Elastizitätsmodul in Ringrichtung                                                                                                   | γκ<br>v<br>E <sub>R,rad</sub>                                         | Kurzzeit<br>9,4<br>0,38<br>800,0                                                           | Langzeit<br>9,4<br>0,38<br>160,0                             | kN/m³<br>[-]<br>N/mm²                       |
| Radiale Biegezugfestigkeit<br>Radiale Biegedruckfestigkeit<br>Ringzugfestigkeit                                                                                                          | f <sub>t,fl</sub><br>f <sub>c,rad</sub><br>f <sub>t</sub>             | 21,0<br>21,0<br>12,6                                                                       | 14,0<br>14,0<br>8,4                                          | N/mm²<br>N/mm²<br>N/mm²                     |
| Schwingbreite bei 2·10^6 Lastspielen:<br>Schwingbreite bei 5·10^6 Lastspielen:<br>Schwingbreite bei 1·10^8 Lastspielen:                                                                  |                                                                       | $\Delta\sigma_{rsk,2E6}$<br>$\Delta\sigma_{rsk,5E6}$<br>$\Delta\sigma_{rsk,1E8}$           | n. def.<br>n. def.<br>n. def.                                | N/mm²<br>N/mm²<br>N/mm²                     |
| 1.2.1.2 Sicherheiten                                                                                                                                                                     |                                                                       |                                                                                            |                                                              |                                             |
| Erforderlicher Sicherheitsbeiwert, Biegezugspannungen<br>Erforderlicher Sicherheitsbeiwert, Biegedruckspannungen<br>Erforderlicher Sicherheitsbeiwert, Instabilität                      | erf γ <sub>RBZ</sub><br>erf γ <sub>RBD</sub><br>erf γ <sub>stab</sub> | 2,50<br>2,50<br>2,50                                                                       | 2,50<br>2,50<br>2,50                                         | [-]<br>[-]<br>[-]                           |
| 1.2.1.3 Mindestgrabenbreite nach DIN EN 1610:2015-12                                                                                                                                     |                                                                       |                                                                                            |                                                              |                                             |
| Die Mindestgrabenbreite nach DIN EN 1610 / DWA-A 139 wird nicht überprü                                                                                                                  | ft.                                                                   |                                                                                            |                                                              |                                             |
| 1.2.2 Zwischenergebnisse bei minimalem Grundwasser                                                                                                                                       |                                                                       |                                                                                            |                                                              |                                             |
| 1.2.2.1 Silotheorie                                                                                                                                                                      |                                                                       |                                                                                            |                                                              |                                             |
| Erdlastbeiwert κ für Grabenlast (Silotheorie):<br>Erdlastbeiwert κ0 für Flächenlast (Silotheorie):                                                                                       |                                                                       | к<br>к <sub>0</sub>                                                                        | 1,000<br>1,000                                               | [-]<br>[-]                                  |
| 1.2.2.2 Belastung                                                                                                                                                                        |                                                                       |                                                                                            |                                                              |                                             |
| Grundwasserstand über Scheitel: Vertikale Bodenspannung aufgrund Erdlast: Vertikale Bodenspannung aufgrund Erd- und Flächenlast: Spannung aufgrund Verkehrslast: Enthaltener Stoßfaktor: |                                                                       | hw,scheitel<br>PErd<br>PE<br>PV<br>¢                                                       | 0,00<br>41,00<br>81,00<br>29,19<br>1,20                      | m<br>kN/m²<br>kN/m²<br>kN/m²<br>[-]         |
| 1.2.2.3 Boden-Verformungsmoduln EB                                                                                                                                                       |                                                                       |                                                                                            |                                                              |                                             |
| E-Modul Verfüllung unter Last:                                                                                                                                                           |                                                                       | Ε1,σ                                                                                       | 6,00                                                         | N/mm²                                       |

| E-Modul anstehender Boden: E-Modul Einbettung (abgemindert): E-Modul Einbettung unter Last: Reduktionsfaktor für das Kriechen: Verdichtungsgrad aus Tabelle 8: Abminderungsfaktor E20 (Grundwasser): Abminderungsfaktor E20 (enger Graben): |                                                                        |                                               | E <sub>3,σ</sub><br>E <sub>2,σ</sub><br>E <sub>20,σ</sub><br>f <sub>1</sub><br>D <sub>pr,E20</sub><br>f <sub>2</sub><br>α <sub>B</sub> | 25,00<br>4,50<br>6,00<br>1,000<br>0,90<br>0,750<br>1,000           | N/mm²<br>N/mm²<br>N/mm²<br>[-]<br>[-]<br>[-] |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------|-----------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|----------------------------------------------|
| Bei einem Verhältnis (Breite Graben/Außendurchmesser                                                                                                                                                                                        | ) >= 4, ergibt die                                                     | Formel 6.03 immer de                          | n Wert 1,0.                                                                                                                            |                                                                    |                                              |
| E-Modul Einbettung (abgemindert):<br>E-Modul Boden unter dem Rohr:                                                                                                                                                                          |                                                                        |                                               | E <sub>2,σ</sub><br>E <sub>4,σ</sub>                                                                                                   | 4,50<br>60,00                                                      | N/mm²<br>N/mm²                               |
| 1.2.2.4 Bodensteifigkeiten                                                                                                                                                                                                                  |                                                                        |                                               |                                                                                                                                        |                                                                    |                                              |
| Hilfswert für horizontale Bettungssteifigkeit:<br>Korrekturfaktor für die horizontale Bettungsste<br>Horizontale Bettungssteifigkeit:<br>Vertikale Bettungssteifigkeit:                                                                     | eifigkeit:                                                             |                                               | $egin{array}{l} \Delta_{f} \ \zeta \ S_{Bh} \ S_{Bv} \end{array}$                                                                      | 1,667<br>1,000<br>2,700<br>3,048                                   | [-]<br>[-]<br>N/mm²<br>N/mm²                 |
| 1.2.2.5 Einfluss der Unterrammung                                                                                                                                                                                                           |                                                                        |                                               |                                                                                                                                        |                                                                    |                                              |
| Erhöhte Ausladung aufgrund Bodenauflocker<br>Verhältnis:<br>Lastkonzentration über dem Rohr (ks gemäß                                                                                                                                       | J                                                                      | A 1997 (44) Nr. 12)                           | as<br>b <sub>s</sub> /d <sub>a</sub><br>: ks                                                                                           | 0,23<br>1,33<br>1,00                                               | [-]<br>[-]<br>[-]                            |
| 1.2.2.6 Auflagerwinkel, wirksame Ausladung                                                                                                                                                                                                  | und Reibungs                                                           | <u>swinkel</u>                                |                                                                                                                                        |                                                                    |                                              |
| Auflagerwinkel: Höhe Auflager von Auflagerwinkel bis UK Roh Höhe untere Bettungsschickt UK Rohr bis Gra Berechnete Ausladung: Erhöhte Ausladung aufgrund Bodenauflocker Wirksame Ausladung: Innerer Reibungswinkel: Wandreibungswinkel:     | abensohle:                                                             |                                               | 2α<br>t <sub>r</sub><br>h <sub>su</sub><br>a<br>a <sub>S</sub><br>a'<br>φ'<br>δ                                                        | 120<br>0,079<br>0,150<br>1,48<br>0,23<br>1,968<br>30,000<br>10,000 | 。<br>m<br>m<br>[-]<br>[-]                    |
|                                                                                                                                                                                                                                             |                                                                        | Kurzzeit<br>alle Lasten                       | Langzeit<br>Erdlasten<br>Verkehrslast                                                                                                  | Langzeit<br>sonstige<br>Lasten                                     |                                              |
| 1.2.2.7 Rohrwerkstoffkennwerte und Ringsteit                                                                                                                                                                                                | <u>figkeit</u>                                                         |                                               |                                                                                                                                        |                                                                    |                                              |
| Elastizitätsmodul in Ringrichtung<br>Radiale Biegezugfestigkeit<br>Radiale Biegedruckfestigkeit                                                                                                                                             | ER,rad<br>f <sub>t,fl</sub><br>f <sub>c,rad</sub>                      | 800,0<br>21,0<br>21,0                         | 329,5<br>15,9<br>15,9                                                                                                                  | 160,0<br>14,0<br>14,0                                              | N/mm²<br>N/mm²<br>N/mm²                      |
| Rohrsteifigkeit                                                                                                                                                                                                                             | S <sub>R</sub>                                                         | 134.069                                       | 55.223                                                                                                                                 | 26.814                                                             | N/m²                                         |
| 1.2.2.8 Steifigkeitsverhältnisse                                                                                                                                                                                                            |                                                                        |                                               |                                                                                                                                        |                                                                    |                                              |
| Systemsteifigkeit, gewichtet<br>Steifigkeitsverhältnis<br>Beiwert für die vertikale Verformung                                                                                                                                              | V <sub>RB,w</sub><br>Vs<br>c <sub>v</sub> *                            | 0,0497<br>1,0476<br>-0,042                    | 0,0205<br>0,7114<br>-0,025                                                                                                             | 0,0099<br>                                                         | [-]<br>[-]<br>[-]                            |
| 1.2.2.9 Beiwerte                                                                                                                                                                                                                            |                                                                        |                                               |                                                                                                                                        |                                                                    |                                              |
| Erdruckbeiwert (Einbettung) Beiwert für den Bettungsreaktionsdruck Resultierender Verformungsbeiwert Resultierender Verformungsbeiwert Beiwert für die vertikale Verformung                                                                 | K <sub>2</sub><br>K*<br>c'h<br>c' <sub>h,qh*</sub><br>c <sub>v</sub> * | 0,400<br>0,769<br>0,0902<br>-0,0676<br>-0,042 | 0,400<br>1,024<br>0,0902<br>-0,0676<br>-0,025                                                                                          | <br><br>                                                           | [-]<br>[-]<br>[-]<br>[-]<br>[-]              |
| 1.2.2.10 Konzentrationsfaktoren λR und λB                                                                                                                                                                                                   |                                                                        |                                               |                                                                                                                                        |                                                                    |                                              |
| Maximaler Konzentrationsfaktor<br>Beiwert für maximalen Konzentrationsfaktor<br>Konzentrationsfaktor über Rohr, Startwert<br>Konzentrationsfaktor über Rohr, unter<br>Grabeneinfluss                                                        | max λ<br>K'<br>λ <sub>R</sub><br>λ <sub>RG</sub>                       | 2,426<br>0,871<br>1,150<br>1,150              | 2,426<br>0,819<br>0,967<br>0,967                                                                                                       | <br><br>                                                           | [-]<br>[-]<br>[-]                            |

| Konzentrationsfaktor über Rohr, oberer                                                                                                                                                                                                                                     | $\lambda_{fo}$                 | 3,693                                      | 3,693                                                                                                  |                                                                  | [-]                                                   |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|--------------------------------------------|--------------------------------------------------------------------------------------------------------|------------------------------------------------------------------|-------------------------------------------------------|
| Grenzwert<br>Konzentrationsfaktor über Rohr, unterer<br>Grenzwert                                                                                                                                                                                                          | $\lambda_{fu}$                 | 0,260                                      | 0,260                                                                                                  |                                                                  | [-]                                                   |
| Konzentrationsfaktor über Rohr, endgültiger<br>Wert                                                                                                                                                                                                                        | $\lambda_{RG}$                 | 1,150                                      | 0,967                                                                                                  |                                                                  | [-]                                                   |
| Konzentrationsfaktor Boden                                                                                                                                                                                                                                                 | λΒ                             | 0,950                                      | 1,011                                                                                                  |                                                                  | [-]                                                   |
| 1.2.2.11 Druckverteilung am Rohrumfang                                                                                                                                                                                                                                     |                                |                                            |                                                                                                        |                                                                  |                                                       |
|                                                                                                                                                                                                                                                                            |                                | Kurzzeit<br>alle Lasten                    | Langzeit<br>Erdlasten<br>Verkehrslast                                                                  | Langzeit<br>sonstige<br>Lasten                                   |                                                       |
| Vertikale Gesamtlast ohne ks<br>Vertikale Gesamtlast<br>Seitendruck<br>Bettungsreaktionsdruck (Erdlasten)<br>Bettungsreaktionsdruck (Wasserfüllung)                                                                                                                        | qvo<br>qv<br>qh<br>q*h<br>q*hw | 122,30<br>122,30<br>32,04<br>70,66<br>0,00 | 107,50<br>107,50<br>34,02<br>77,02<br>0,00                                                             | <br><br>                                                         | kN/m²<br>kN/m²<br>kN/m²<br>kN/m²<br>kN/m²             |
| 1.2.3 Zwischenergebnisse bei maximalem                                                                                                                                                                                                                                     | Grundwasser                    |                                            |                                                                                                        |                                                                  |                                                       |
| 1.2.3.1 Silotheorie                                                                                                                                                                                                                                                        |                                |                                            |                                                                                                        |                                                                  |                                                       |
| Erdlastbeiwert κ für Grabenlast (Silotheorie):<br>Erdlastbeiwert κ0 für Flächenlast (Silotheorie)                                                                                                                                                                          | ):                             |                                            | К<br>К0                                                                                                | 1,000<br>1,000                                                   | [-]<br>[-]                                            |
| 1.2.3.2 Belastung                                                                                                                                                                                                                                                          |                                |                                            |                                                                                                        |                                                                  |                                                       |
| Grundwasserstand über Scheitel:<br>Wichte Verfüllung unter Wasser:<br>Vertikale Bodenspannung aufgrund Erdlast:<br>Vertikale Bodenspannung aufgrund Erd- und<br>Spannung aufgrund Verkehrslast:<br>Enthaltener Stoßfaktor:                                                 | Flächenlast:                   |                                            | hw,scheitel<br>Y'<br>PErd<br>PE<br>Pv<br>¢                                                             | 2,04<br>11,00<br>22,69<br>62,69<br>29,19<br>1,20                 | m<br>kN/m³<br>kN/m²<br>kN/m²<br>kN/m²<br>[-]          |
| 1.2.3.3 Boden-Verformungsmoduln EB                                                                                                                                                                                                                                         |                                |                                            |                                                                                                        |                                                                  |                                                       |
| E-Modul Verfüllung unter Last: E-Modul anstehender Boden: E-Modul Einbettung (abgemindert): E-Modul Einbettung unter Last: Reduktionsfaktor für das Kriechen: Verdichtungsgrad aus Tabelle 8: Abminderungsfaktor E20 (Grundwasser): Abminderungsfaktor E20 (enger Graben): |                                |                                            | $E_{1,\sigma}$ $E_{3,\sigma}$ $E_{2,\sigma}$ $E_{20,\sigma}$ $f_{1}$ $D_{pr,E20}$ $f_{2}$ $\alpha_{B}$ | 6,00<br>25,00<br>4,50<br>6,00<br>1,000<br>0,90<br>0,750<br>1,000 | N/mm²<br>N/mm²<br>N/mm²<br>N/mm²<br>[-]<br>[-]<br>[-] |
| Bei einem Verhältnis (Breite Graben/Außendurchmesser                                                                                                                                                                                                                       | ·) >= 4, ergibt die Fo         | ormel 6.03 immer den                       | Wert 1,0.                                                                                              |                                                                  |                                                       |
| E-Modul Einbettung (abgemindert):<br>E-Modul Boden unter dem Rohr:                                                                                                                                                                                                         |                                |                                            | Ε <sub>2,σ</sub><br>Ε <sub>4,σ</sub>                                                                   | 4,50<br>60,00                                                    | N/mm²<br>N/mm²                                        |
| 1.2.3.4 Bodensteifigkeiten                                                                                                                                                                                                                                                 |                                |                                            |                                                                                                        |                                                                  |                                                       |
| Hilfswert für horizontale Bettungssteifigkeit:<br>Korrekturfaktor für die horizontale Bettungsste<br>Horizontale Bettungssteifigkeit:<br>Vertikale Bettungssteifigkeit:                                                                                                    | eifigkeit:                     |                                            | Δ <sub>f</sub><br>ζ<br>S <sub>Bh</sub><br>S <sub>Bv</sub>                                              | 1,667<br>1,000<br>2,700<br>3,048                                 | [-]<br>[-]<br>N/mm²<br>N/mm²                          |
| 1.2.3.5 Einfluss der Unterrammung                                                                                                                                                                                                                                          |                                |                                            |                                                                                                        |                                                                  |                                                       |
| Erhöhte Ausladung aufgrund Bodenauflocker<br>Verhältnis:<br>Lastkonzentration über dem Rohr (ks gemäß                                                                                                                                                                      |                                | 997 (44) Nr. 12):                          | as<br>b <sub>s</sub> /d <sub>a</sub><br>ks                                                             | 0,23<br>1,33<br>1,00                                             | [-]<br>[-]<br>[-]                                     |
| 1.2.3.6 Auflagerwinkel, wirksame Ausladung                                                                                                                                                                                                                                 | und Reibungsw                  | inkel                                      |                                                                                                        |                                                                  |                                                       |
| Auflagerwinkel:                                                                                                                                                                                                                                                            |                                |                                            | 2α                                                                                                     | 120                                                              | ۰                                                     |

| Höhe Auflager von Auflagerwinkel bis UK Rohr<br>Höhe untere Bettungsschickt UK Rohr bis Gra<br>Berechnete Ausladung:<br>Erhöhte Ausladung aufgrund Bodenauflockeru<br>Wirksame Ausladung:<br>Innerer Reibungswinkel:<br>Wandreibungswinkel: | bensohle:                                                               |                                               | t <sub>r</sub><br>h <sub>su</sub><br>a<br>as<br>a'<br>φ'<br>δ | 0,079<br>0,150<br>1,48<br>0,23<br>1,968<br>30,000<br>10,000 | m<br>m<br>[-]<br>[-]                      |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------|-----------------------------------------------|---------------------------------------------------------------|-------------------------------------------------------------|-------------------------------------------|
|                                                                                                                                                                                                                                             |                                                                         | Kurzzeit<br>alle Lasten                       | Langzeit<br>Erdlasten<br>Verkehrslast                         | Langzeit<br>sonstige<br>Lasten                              |                                           |
| 1.2.3.7 Rohrwerkstoffkennwerte und Ringsteif                                                                                                                                                                                                | <u>igkeit</u>                                                           |                                               |                                                               |                                                             |                                           |
| Elastizitätsmodul in Ringrichtung<br>Radiale Biegezugfestigkeit<br>Radiale Biegedruckfestigkeit                                                                                                                                             | ER,rad<br>f <sub>t,fl</sub><br>f <sub>c,rad</sub>                       | 800,0<br>21,0<br>21,0                         | 363,3<br>16,2<br>16,2                                         | 160,0<br>14,0<br>14,0                                       | N/mm²<br>N/mm²<br>N/mm²                   |
| Rohrsteifigkeit                                                                                                                                                                                                                             | SR                                                                      | 134.069                                       | 60.887                                                        | 26.814                                                      | N/m²                                      |
| 1.2.3.8 Steifigkeitsverhältnisse                                                                                                                                                                                                            |                                                                         |                                               |                                                               |                                                             |                                           |
| Systemsteifigkeit, gewichtet<br>Steifigkeitsverhältnis<br>Beiwert für die vertikale Verformung                                                                                                                                              | V <sub>RB,w</sub><br>V <sub>S</sub><br>c <sub>v</sub> *                 | 0,0497<br>1,0476<br>-0,042                    | 0,0226<br>0,7396<br>-0,027                                    | 0,0099<br>                                                  | [-]<br>[-]<br>[-]                         |
| <u>1.2.3.9 Beiwerte</u>                                                                                                                                                                                                                     |                                                                         |                                               |                                                               |                                                             |                                           |
| Erdruckbeiwert (Einbettung) Beiwert für den Bettungsreaktionsdruck Resultierender Verformungsbeiwert Resultierender Verformungsbeiwert Beiwert für die vertikale Verformung                                                                 | K <sub>2</sub><br>K*<br>c'h<br>c' <sub>h,qh</sub> *<br>c <sub>v</sub> * | 0,400<br>0,769<br>0,0902<br>-0,0676<br>-0,042 | 0,400<br>1,001<br>0,0902<br>-0,0676<br>-0,027                 | <br><br><br>                                                | [-]<br>[-]<br>[-]<br>[-]                  |
| 1.2.3.10 Konzentrationsfaktoren λR und λB                                                                                                                                                                                                   |                                                                         |                                               |                                                               |                                                             |                                           |
| Maximaler Konzentrationsfaktor<br>Beiwert für maximalen Konzentrationsfaktor<br>Konzentrationsfaktor über Rohr, Startwert<br>Konzentrationsfaktor über Rohr, unter<br>Grabeneinfluss                                                        | max λ<br>K'<br>λ <sub>R</sub><br>λ <sub>RG</sub>                        | 2,426<br>0,871<br>1,150<br>1,150              | 2,426<br>0,827<br>0,985<br>0,985                              | <br><br>                                                    | [-]<br>[-]<br>[-]                         |
| Konzentrationsfaktor über Rohr, oberer<br>Grenzwert                                                                                                                                                                                         | $\lambda_{fo}$                                                          | 3,693                                         | 3,693                                                         |                                                             | [-]                                       |
| Konzentrationsfaktor über Rohr, unterer<br>Grenzwert                                                                                                                                                                                        | $\lambda_{fu}$                                                          | 0,260                                         | 0,260                                                         |                                                             | [-]                                       |
| Konzentrationsfaktor über Rohr, endgültiger<br>Wert                                                                                                                                                                                         | λRG                                                                     | 1,150                                         | 0,985                                                         |                                                             | [-]                                       |
| Konzentrationsfaktor Boden                                                                                                                                                                                                                  | λв                                                                      | 0,950                                         | 1,005                                                         |                                                             | [-]                                       |
| 1.2.3.11 Druckverteilung am Rohrumfang                                                                                                                                                                                                      |                                                                         |                                               |                                                               |                                                             |                                           |
|                                                                                                                                                                                                                                             |                                                                         | Kurzzeit<br>alle Lasten                       | Langzeit<br>Erdlasten<br>Verkehrslast                         | Langzeit<br>sonstige<br>Lasten                              |                                           |
| Vertikale Gesamtlast ohne ks<br>Vertikale Gesamtlast<br>Seitendruck<br>Bettungsreaktionsdruck (Erdlasten)<br>Bettungsreaktionsdruck (Wasserfüllung)                                                                                         | qv0<br>qv<br>qh<br>q*h<br>q*hw                                          | 101,25<br>101,25<br>24,52<br>59,97<br>0,00    | 90,92<br>90,92<br>25,89<br>66,36<br>0,00                      | <br><br>                                                    | kN/m²<br>kN/m²<br>kN/m²<br>kN/m²<br>kN/m² |
| 1.2.4 Schnittkräfte                                                                                                                                                                                                                         |                                                                         |                                               |                                                               |                                                             |                                           |
| 1.2.4.1 Schnittkräfte bei minimalem Grundwas                                                                                                                                                                                                | sser, Kurzzeit                                                          |                                               |                                                               |                                                             |                                           |
| Rerounding-Faktor (Abminderung Momente):                                                                                                                                                                                                    |                                                                         | Scheitel                                      | r<br>Kämpfer                                                  | 1,000<br>Sohle                                              | [-]                                       |
| LO. ft F Pic 0.00 4 00005 40 50 00                                                                                                                                                                                                          | -                                                                       |                                               |                                                               |                                                             |                                           |

| Idittlerer Radius r <sub>m</sub> Idoment aufgrund vertikaler Gesamtbelastung Mqv Idoment aufgrund Seitendruck Mqh Idoment aufgrund horiz. M*qh Idoment aufgrund keitendruck Idoment aufgrund Eigengewicht Mg Idoment aufgrund Wasserfüllung Mw Idoment aufgrund Wasserdruck/Innendruck Mpw Idoment aufgrund Wasserdruck/Innendruck Mpw Idoment aufgrund Vertikaler Interest Radius Int | 0,701<br>-0,176<br>-0,281<br>0,001<br>0,000<br>0,000<br>0,246<br>Scheitel<br>148,15 | 148,15 -0,711 0,176 0,323 -0,002 0,000 0,000 -0,215  Kämpfer | 0,738<br>-0,176<br>-0,281<br>0,002<br>0,000<br>0,000 | mm kNm/m kNm/m kNm/m kNm/m kNm/m kNm/m kNm/m |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|--------------------------------------------------------------|------------------------------------------------------|----------------------------------------------|
| Moment aufgrund Seitendruck       Mqh         Moment aufgrund horiz.       M*qh         Moment aufgrund horiz.       M*qh         ettungsreaktionsdruck       Mg         Ioment aufgrund Eigengewicht       Mg         Ioment aufgrund Wasserfüllung       Mw         Ioment aufgrund Wasserdruck/Innendruck       Mpw         Iumme der Momente       ΣΜ         Iittlerer Radius       rm         Iormalkraft aufgrund vertikaler       Nqv         Gesamtbelastung       Nqv                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -0,176<br>-0,281<br>0,001<br>0,000<br>0,000<br>0,246<br>Scheitel                    | 0,176<br>0,323<br>-0,002<br>0,000<br>0,000<br>-0,215         | -0,176<br>-0,281<br>0,002<br>0,000<br>0,000          | kNm/m<br>kNm/m<br>kNm/m<br>kNm/m<br>kNm/m    |
| Moment aufgrund Seitendruck       Mqh         Moment aufgrund horiz.       M*qh         Moment aufgrund horiz.       M*qh         ettungsreaktionsdruck       Mg         Ioment aufgrund Eigengewicht       Mg         Ioment aufgrund Wasserfüllung       Mw         Ioment aufgrund Wasserdruck/Innendruck       Mpw         Iumme der Momente       ΣΜ         Iittlerer Radius       rm         Iormalkraft aufgrund vertikaler       Nqv         Gesamtbelastung       Nqv                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -0,176<br>-0,281<br>0,001<br>0,000<br>0,000<br>0,246<br>Scheitel                    | 0,176<br>0,323<br>-0,002<br>0,000<br>0,000<br>-0,215         | -0,176<br>-0,281<br>0,002<br>0,000<br>0,000          | kNm/m<br>kNm/m<br>kNm/m<br>kNm/m<br>kNm/m    |
| Ioment aufgrund horiz. $M^*_{qh}$ ettungsreaktionsdruck       Mg         Ioment aufgrund Eigengewicht       Mg         Ioment aufgrund Wasserfüllung       Mw         Ioment aufgrund Wasserdruck/Innendruck       Mpw         Iumme der Momente       ΣΜ         Iittlerer Radius $r_m$ Iormalkraft aufgrund vertikaler $N_{qv}$ Gesamtbelastung                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -0,281<br>0,001<br>0,000<br>0,000<br>0,246<br>Scheitel                              | 0,323<br>-0,002<br>0,000<br>0,000<br>-0,215                  | -0,281<br>0,002<br>0,000<br>0,000                    | kNm/m<br>kNm/m<br>kNm/m<br>kNm/m             |
| ettungsreaktionsdruck floment aufgrund Eigengewicht floment aufgrund Wasserfüllung floment aufgrund Wasserdruck/Innendruck floment aufgrund wasserdruck/Innendruck/Innendruck/Innendruck/Innendruck/Innendruck/Innendruck/Innendruck/Innendruck/Innendruck/Innendruck/Innendruck/Innendruck/Innendruck/Innendruck/Innendruck/Innendru          | 0,001<br>0,000<br>0,000<br>0,246<br>Scheitel                                        | -0,002<br>0,000<br>0,000<br>-0,215                           | 0,002<br>0,000<br>0,000                              | kNm/m<br>kNm/m<br>kNm/m                      |
| Ioment aufgrund Eigengewicht       Mg         Ioment aufgrund Wasserfüllung       Mw         Ioment aufgrund Wasserdruck/Innendruck       Mpw         umme der Momente       ΣΜ         Iittlerer Radius       rm         Iormalkraft aufgrund vertikaler       Nqv         iesamtbelastung       Nqv                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0,000<br>0,000<br>0,246<br>Scheitel                                                 | 0,000<br>0,000<br>-0,215                                     | 0,000<br>0,000                                       | kNm/m<br>kNm/m                               |
| $\begin{array}{llllllllllllllllllllllllllllllllllll$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0,000<br>0,000<br>0,246<br>Scheitel                                                 | 0,000<br>0,000<br>-0,215                                     | 0,000<br>0,000                                       | kNm/m<br>kNm/m                               |
| Ioment aufgrund Wasserdruck/Innendruck       Mpw         umme der Momente       ΣΜ         littlerer Radius       rm         ormalkraft aufgrund vertikaler       Nqv         iesamtbelastung       Nqv                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0,000<br>0,246<br>Scheitel                                                          | -0,215                                                       | 0,000                                                | kNm/m                                        |
| umme der Momente ΣM  littlerer Radius r <sub>m</sub> ormalkraft aufgrund vertikaler N <sub>qv</sub> esamtbelastung                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0,246<br>Scheitel                                                                   | -0,215                                                       |                                                      |                                              |
| littlerer Radius r <sub>m</sub> lormalkraft aufgrund vertikaler N <sub>qv</sub> Sesamtbelastung                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Scheitel                                                                            |                                                              | 0,284                                                | kNm/m                                        |
| ormalkraft aufgrund vertikaler N <sub>qv</sub><br>esamtbelastung                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                     | Kämpfer                                                      |                                                      |                                              |
| ormalkraft aufgrund vertikaler N <sub>qv</sub><br>esamtbelastung                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 148,15                                                                              |                                                              | Sohle                                                |                                              |
| esamtbelastung                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                     | 148,15                                                       | 148,15                                               | mm                                           |
| esamtbelastung                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                     |                                                              |                                                      |                                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0,489                                                                               | -18,119                                                      | -0,489                                               | kN/m                                         |
| ormalkraft aufgrund Seitendruck Nah                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                     |                                                              |                                                      |                                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -4,747                                                                              | 0,000                                                        | -4,747                                               | kN/m                                         |
| ormalkraft aufgrund horiz. N* <sub>qh</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -6,040                                                                              | 0,000                                                        | -6,040                                               | kN/m                                         |
| ettungsreaktionsdruck                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                     |                                                              |                                                      |                                              |
| ormalkraft aufgrund Eigengewicht N <sub>g</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0,007                                                                               | -0,041                                                       | -0,007                                               | kN/m                                         |
| ormalkraft aufgrund Wasserfüllung N <sub>w</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0,000                                                                               | 0,000                                                        | 0,000                                                | kN/m                                         |
| ormalkraft aufgrund WasserdruckIInnendruck N <sub>pw</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0,000                                                                               | 0,000                                                        | 0,000                                                | kN/m                                         |
| ımme der Normalkräfte ΣN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -10,292                                                                             | -18,160                                                      | -11,284                                              | kN/m                                         |
| 2.4.2 Schnittkräfte bei minimalem Grundwasser, Lang                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | zeit                                                                                |                                                              |                                                      |                                              |
| erounding-Faktor (Abminderung Momente):                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                     | r                                                            | 1,000                                                | [-]                                          |
| stouriding traiter (Astrinadorang Montonio).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Scheitel                                                                            | Kämpfer                                                      | Sohle                                                | []                                           |
| ittlerer Radius r <sub>m</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 148,15                                                                              | 148,15                                                       | 148,15                                               | mm                                           |
| oment aufgrund vertikaler Gesamtbelastung M <sub>qv</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0,616                                                                               | -0,625                                                       | 0,649                                                | kNm/m                                        |
| oment aufgrund Seitendruck                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -0,187                                                                              | 0,187                                                        | -0,187                                               | kNm/m                                        |
| oment aufgrund horiz. M* <sub>qh</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -0,306                                                                              | 0,352                                                        | -0,306                                               | kNm/m                                        |
| ettungsreaktionsdruck                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | -0,500                                                                              | 0,002                                                        | -0,500                                               | KINIII/III                                   |
| oment aufgrund Eigengewicht Mg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0,001                                                                               | -0,002                                                       | 0,002                                                | kNm/m                                        |
| oment aufgrund Wasserfüllung M <sub>w</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0,000                                                                               | 0,000                                                        | 0,002                                                | kNm/m                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0,000                                                                               | 0,000                                                        | 0,000                                                | kNm/m                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0,000                                                                               | 0,000                                                        | 0,000                                                |                                              |
| umme der Momente ΣM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0,125                                                                               | -0,089                                                       | 0,158                                                | kNm/m                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Scheitel                                                                            | Kämpfer                                                      | Sohle                                                |                                              |
| littlerer Radius r <sub>m</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 148,15                                                                              | 148,15                                                       | 148,15                                               | mm                                           |
| anna allematta a referencia di constitue tono                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.400                                                                               | 45.000                                                       | 0.400                                                | LaN L/                                       |
| ormalkraft aufgrund vertikaler N <sub>qv</sub><br>esamtbelastung                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0,430                                                                               | -15,926                                                      | -0,430                                               | kN/m                                         |
| 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -5,040                                                                              | 0,000                                                        | -5,040                                               | kN/m                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                     |                                                              |                                                      |                                              |
| ormalkraft aufgrund horiz. N* <sub>qh</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -6,584                                                                              | 0,000                                                        | -6,584                                               | kN/m                                         |
| ettungsreaktionsdruck                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.007                                                                               | 0.044                                                        | 0.007                                                | kN/m                                         |
| ormalkraft aufgrund Eigengewicht Ng                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0,007                                                                               | -0,041                                                       | -0,007                                               | kN/m                                         |
| ormalkraft aufgrund Wasserfüllung N <sub>w</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0,000                                                                               | 0,000                                                        | 0,000                                                | kN/m                                         |
| ormalkraft aufgrund WasserdruckIInnendruck N <sub>pw</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0,000                                                                               | 0,000                                                        | 0,000                                                | kN/m                                         |
| umme der Normalkräfte ΣN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -11,187                                                                             | -15,967                                                      | -12,060                                              | kN/m                                         |
| 2.4.3 Schnittkräfte bei maximalem Grundwasser, Kurz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | zeit                                                                                |                                                              |                                                      |                                              |
| erounding-Faktor (Abminderung Momente):                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                     | r                                                            | 1,000                                                | [-]                                          |
| s. s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Scheitel                                                                            | Kämpfer                                                      | Sohle                                                | r 1                                          |
| ittlerer Radius r <sub>m</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 148,15                                                                              | 148,15                                                       | 148,15                                               | mm                                           |
| ittlerer Radius r <sub>m</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 170,10                                                                              | 170,10                                                       | 170,10                                               | 111111                                       |
| oment aufgrund vertikaler Gesamtbelastung M <sub>qv</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0,580                                                                               | -0,589                                                       | 0,611                                                | kNm/m                                        |
| oment aufgrund Seitendruck M <sub>qh</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -0,135                                                                              | 0,135                                                        | -0,135                                               | kNm/m                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -0,238                                                                              | 0,274                                                        | -0,238                                               | kNm/m                                        |
| Ioment aufgrund horiz. M* <sub>qh</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -11/.11                                                                             | U./ I +                                                      |                                                      |                                              |

| Moment aufgrund Eigengewicht                        | Mq               | 0,001    | -0,002  | 0,002   | kNm/m |
|-----------------------------------------------------|------------------|----------|---------|---------|-------|
| Moment aufgrund Wasserfüllung                       | Mw               | 0,000    | 0,000   | 0,000   | kNm/m |
| Moment aufgrund Wasserdruck/Innendruck              | $M_{pw}$         | -0,001   | -0,001  | -0,001  | kNm/m |
| umme der Momente                                    | ΣΜ               | 0,208    | -0,183  | 0,240   | kNm/m |
|                                                     |                  | Scheitel | Kämpfer | Sohle   |       |
| littlerer Radius                                    | $r_{m}$          | 148,15   | 148,15  | 148,15  | mm    |
| ormalkraft aufgrund vertikaler<br>esamtbelastung    | $N_{qv}$         | 0,405    | -15,000 | -0,405  | kN/m  |
| ormalkraft aufgrund Seitendruck                     | N <sub>qh</sub>  | -3,632   | 0,000   | -3,632  | kN/m  |
| ormalkraft aufgrund horiz.<br>ettungsreaktionsdruck | N*qh             | -5,126   | 0,000   | -5,126  | kN/m  |
| ormalkraft aufgrund Eigengewicht                    | Ng               | 0,007    | -0,041  | -0,007  | kN/m  |
| ormalkraft aufgrund Wasserfüllung                   | $N_W$            | 0,000    | 0,000   | 0,000   | kN/m  |
| ormalkraft aufgrund WasserdrucklInnendruck          | N <sub>pw</sub>  | -3,701   | -3,701  | -3,701  | kN/m  |
| umme der Normalkräfte                               | ΣΝ               | -12,048  | -18,742 | -12,871 | kN/m  |
| 2.4.4 Schnittkräfte bei maximalem Grundwas          | ser, Langzeit    |          |         |         |       |
| erounding-Faktor (Abminderung Momente):             |                  |          | r       | 1,000   | [-]   |
| ,                                                   |                  | Scheitel | Kämpfer | Sohle   |       |
| ittlerer Radius                                     | $r_{m}$          | 148,15   | 148,15  | 148,15  | mm    |
| loment aufgrund vertikaler Gesamtbelastung          | $M_{qv}$         | 0,521    | -0,529  | 0,549   | kNm/m |
| loment aufgrund Seitendruck                         | $M_{qh}$         | -0,142   | 0,142   | -0,142  | kNm/m |
| loment aufgrund horiz.                              | M* <sub>qh</sub> | -0,264   | 0,303   | -0,264  | kNm/m |
| ettungsreaktionsdruck                               |                  |          |         |         |       |
| loment aufgrund Eigengewicht                        | Mg               | 0,001    | -0,002  | 0,002   | kNm/m |
| loment aufgrund Wasserfüllung                       | Mw               | 0,000    | 0,000   | 0,000   | kNm/m |
| loment aufgrund Wasserdruck/Innendruck              | $M_{pw}$         | -0,001   | -0,001  | -0,001  | kNm/m |
| umme der Momente                                    | ΣΜ               | 0,116    | -0,086  | 0,144   | kNm/m |
|                                                     |                  | Scheitel | Kämpfer | Sohle   |       |
| littlerer Radius                                    | $r_{\text{m}}$   | 148,15   | 148,15  | 148,15  | mm    |
| ormalkraft aufgrund vertikaler                      | $N_{qv}$         | 0,364    | -13,470 | -0,364  | kN/m  |
| esamtbelastung                                      |                  | 0.000    | 0.000   | 0.000   | 1.51/ |
| ormalkraft aufgrund Seitendruck                     | N <sub>qh</sub>  | -3,836   | 0,000   | -3,836  | kN/m  |
| ormalkraft aufgrund horiz.                          | $N^*_{qh}$       | -5,673   | 0,000   | -5,673  | kN/m  |
| ettungsreaktionsdruck                               |                  | 2 227    | 0.044   | 0.00=   | 1.817 |
| ormalkraft aufgrund Eigengewicht                    | $N_g$            | 0,007    | -0,041  | -0,007  | kN/m  |
| lormalkraft aufgrund Wasserfüllung                  | N <sub>w</sub>   | 0,000    | 0,000   | 0,000   | kN/m  |
| lormalkraft aufgrund Wasserdrucklinnendruck         | •                | -3,701   | -3,701  | -3,701  | kN/m  |
| Summe der Normalkräfte                              | ΣΝ               | -12,840  | -17,212 | -13,580 | kN/m  |
|                                                     |                  |          |         |         |       |

# 1.2.5 Nachweise Kurzzeit

# 1.2.5.1 Spannungsnachweis (bei minimalem Grundwasser)

$$\sigma_{R,res} = \frac{|\sigma_{qv,qh,qh^*}| \cdot \bar{\sigma}_R + |\sigma_{sonst}| \cdot \sigma_{R,L}}{|\sigma_{qv,qh,qh^*}| + |\sigma_{sonst}|}$$
 (9.01c) Erforderlicher Sicherheitsbeiwert, Biegezugspannungen: erf  $\gamma_{RBZ}$  2,50 [-] Erforderlicher Sicherheitsbeiwert, Biegedruckspannungen: erf  $\gamma_{RBD}$  2,50 [-] Anzusetzende Biegezugfestigkeit  $\gamma_{RBD}$  2,50 [-] Anzusetzende Biegedruckfestigkeit  $\gamma_{RBD}$  2,50 [-] Anzusetzende Biegedruckfestigkeit  $\gamma_{RBD}$  2,700 21,00 N/mm²

# innen

| Korrekturfaktor Krümmung innen:                                                                                                                                                                       |                                                              |                                        | $\alpha_{ki}$                         | 1,042                               | [-]                     |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|----------------------------------------|---------------------------------------|-------------------------------------|-------------------------|
| Spannung aufgrund Erd- u. Verkehrslasten<br>Spannung aufgrund anderer Lasten<br>Spannung gesamt                                                                                                       | σ <sub>qv,qh,qh</sub> *<br>σsonst<br>σ                       | Scheitel<br>3,813<br>0,027<br>3,839    | Kämpfer<br>-4,776<br>-0,033<br>-4,808 | Sohle<br>4,432<br>0,036<br>4,468    | N/mm²<br>N/mm²<br>N/mm² |
| Sicherheitsbeiwert Biegezug:<br>Sicherheitsbeiwert Biegedruck:                                                                                                                                        | YBZ<br>YBD                                                   | 5,469<br>                              | 4,367                                 | 4,700<br>                           | [-]<br>[-]              |
| außen                                                                                                                                                                                                 |                                                              |                                        |                                       |                                     |                         |
| Korrekturfaktor Krümmung außen:                                                                                                                                                                       |                                                              |                                        | α <sub>ka</sub>                       | 0,958                               | [-]                     |
| Spannung aufgrund Erd- u. Verkehrslasten<br>Spannung aufgrund anderer Lasten<br>Spannung gesamt                                                                                                       | σ <sub>qv,qh,qh</sub> *<br>σ <sub>sonst</sub><br>σ           | Scheitel<br>-4,562<br>-0,024<br>-4,586 | Kämpfer<br>2,531<br>0,026<br>2,556    | Sohle<br>-5,232<br>-0,033<br>-5,265 | N/mm²<br>N/mm²<br>N/mm² |
| Sicherheitsbeiwert Biegezug:<br>Sicherheitsbeiwert Biegedruck:                                                                                                                                        | YBZ<br>YBD                                                   | <br>4,579                              | 8,215<br>                             | 3,988                               | [-]<br>[-]              |
| Alle errechneten Sicherheitsbeiwerte des Sp                                                                                                                                                           | annungsnachwe                                                | ises sind ausre                        | eichend.                              |                                     |                         |
| 1.2.5.2 Spannungsnachweis (bei maximalem                                                                                                                                                              | <u>Grundwasser)</u>                                          |                                        |                                       |                                     |                         |
| $\sigma_{\text{R,res}} = \frac{ \sigma_{\text{qv,qh,qh*}}  \cdot \bar{\sigma}_{\text{R}} +  \sigma_{\text{sonst}}  \cdot \sigma_{\text{R,L}}}{ \sigma_{\text{qv,qh,qh*}}  +  \sigma_{\text{sonst}} }$ |                                                              |                                        |                                       |                                     | (9.01c                  |
| Erforderlicher Sicherheitsbeiwert, Biegezugsp<br>Erforderlicher Sicherheitsbeiwert, Biegedruck                                                                                                        |                                                              |                                        | erf $\gamma_{RBZ}$ erf $\gamma_{RBD}$ | 2,50<br>2,50                        | [-]<br>[-]              |
| Anzusetzende Biegezugfestigkeit<br>Anzusetzende Biegedruckfestigkeit                                                                                                                                  | $\begin{array}{c} f_{t,fl,res} \\ f_{c,rad,res} \end{array}$ | 21,00<br>21,00                         | 21,00<br>21,00                        | 21,00<br>21,00                      | N/mm²<br>N/mm²          |
| innen                                                                                                                                                                                                 |                                                              |                                        |                                       |                                     |                         |
| Korrekturfaktor Krümmung innen:                                                                                                                                                                       |                                                              |                                        | αki                                   | 1,042                               | [-]                     |
| Spannung aufgrund Erd- u. Verkehrslasten<br>Spannung aufgrund anderer Lasten<br>Spannung gesamt                                                                                                       | σqv,qh,qh*<br>σ <sub>sonst</sub><br>σ                        | Scheitel<br>3,259<br>-0,184<br>3,075   | Kämpfer<br>-4,031<br>-0,243<br>-4,274 | Sohle<br>3,772<br>-0,175<br>3,597   | N/mm²<br>N/mm²<br>N/mm² |
| Sicherheitsbeiwert Biegezug:<br>Sicherheitsbeiwert Biegedruck:                                                                                                                                        | Yвz<br>YвD                                                   | 6,829                                  | <br>4,914                             | 5,838<br>                           | [-]<br>[-]              |
| außen                                                                                                                                                                                                 |                                                              |                                        |                                       |                                     |                         |
| Korrekturfaktor Krümmung außen:                                                                                                                                                                       |                                                              |                                        | $\alpha_{ka}$                         | 0,958                               | [-]                     |
| Spannung aufgrund Erd- u. Verkehrslasten<br>Spannung aufgrund anderer Lasten<br>Spannung gesamt                                                                                                       | σ <sub>qv,qh,qh</sub> *<br>σ <sub>sonst</sub><br>σ           | Scheitel<br>-3,853<br>-0,211<br>-4,063 | Kämpfer<br>2,166<br>-0,161<br>2,005   | Sohle<br>-4,407<br>-0,220<br>-4,627 | N/mm²<br>N/mm²<br>N/mm² |
| Sicherheitsbeiwert Biegezug:<br>Sicherheitsbeiwert Biegedruck:                                                                                                                                        | γBZ<br>γBD                                                   | <br>5,168                              | 10,474<br>                            | <br>4,538                           | [-]<br>[-]              |
| Alle errechneten Sicherheitsbeiwerte des Sp                                                                                                                                                           | annungsnachwe                                                | ises sind ausre                        | eichend.                              |                                     |                         |
|                                                                                                                                                                                                       |                                                              |                                        |                                       |                                     |                         |
| 1.2.5.3 Verformungsnachweis (bei minimaler                                                                                                                                                            | m Grundwasser)                                               |                                        |                                       |                                     |                         |

|                                                |                  | q <sub>v</sub> |         | CI-                     | q <sub>h</sub> * |         |     |
|------------------------------------------------|------------------|----------------|---------|-------------------------|------------------|---------|-----|
| Verformungsbeiwert für Biegemomente            | C <sub>V</sub>   | чν             | -0.0893 | q <sub>h</sub> 0.0833   | Чn               | 0.0640  | [-] |
| Verformungsbeiwert für Normalkräfte            | c <sup>N</sup> v |                | -0,6830 | -0,6810                 |                  | -0,2470 | i-i |
| Verformungsbeiwert für Querkräfte              | $c^{Q}{}_{V}$    |                | -0,3590 | 0,3350                  |                  | 0,2430  | [-] |
| Resultierender Verformungsbeiwert              | C' <sub>V</sub>  |                | -0,0918 | 0,0839                  |                  | 0,0647  | [-] |
| Resultierender Verformungsbeiwert              | C'h              |                | 0,0902  | -0,0857                 |                  | -0,0676 | [-] |
| Vertikale Durchmesseränderung:                 |                  |                |         | $\Delta d_{V}$          |                  | 8,76    | mm  |
| Horizontale Durchmesseränderung:               |                  |                |         | $\Delta d_h$            |                  | 7,75    | mm  |
| Relative vertikale Verformung (aus Belastung,  | elastisch, Typ   | B):            |         | $\delta_{V,B}$          |                  | 2,96    | %   |
| Vorverformung (z. B. aus Fertigung, plastisch, | Typ A):          |                |         | $\delta_{V,A}$          |                  | 1,00    | %   |
| Vertikale Gesamtverformung (Typ A + Typ B):    |                  |                |         | $\delta_{V,Ges}$        |                  | 3,96    | %   |
| Zulässige Verformung:                          |                  |                |         | zul $\delta_{\text{V}}$ |                  | 6,00    | %   |
|                                                | 1 1 1/ 6         |                |         |                         |                  |         |     |

# Die errechnete Verformung ist kleiner als die zulässige Verformung.

# 1.2.5.4 Verformungsnachweis (bei maximalem Grundwasser)

| Rechenmodus:<br>Verhältnis:<br>Verhältnis 'I/(A·rm²)·κ~Q':                                                                                  |                                                        |                |                               | linear<br>I/(A·rm²)<br>I/(A·rm²)·κ <sub>Q</sub>                               |                  | 0,00133<br>0,00159          |             |
|---------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|----------------|-------------------------------|-------------------------------------------------------------------------------|------------------|-----------------------------|-------------|
| Verformungsbeiwert für Biegemomente<br>Verformungsbeiwert für Normalkräfte<br>Verformungsbeiwert für Querkräfte                             | c <sub>v</sub><br>c <sup>N</sup> v<br>c <sup>Q</sup> v | q <sub>V</sub> | -0,0893<br>-0,6830<br>-0,3590 | q <sub>h</sub><br>0,0833<br>-0,6810<br>0,3350                                 | q <sub>h</sub> * | 0,0640<br>-0,2470<br>0,2430 | [-]<br>[-]  |
| Resultierender Verformungsbeiwert<br>Resultierender Verformungsbeiwert                                                                      | C' <sub>V</sub><br>C'h                                 |                | -0,0918<br>0,0902             | 0,0839<br>-0,0857                                                             |                  | 0,0647<br>-0,0676           | [-]<br>[-]  |
| Vertikale Durchmesseränderung:<br>Horizontale Durchmesseränderung:                                                                          |                                                        |                |                               | $\Delta d_V \ \Delta d_h$                                                     |                  | 7,41<br>6,58                | mm<br>mm    |
| Relative vertikale Verformung (aus Belastung<br>Vorverformung (z. B. aus Fertigung, plastisch<br>Vertikale Gesamtverformung (Typ A + Typ B) | , Тур А):                                              | B):            |                               | $\begin{array}{l} \delta_{v,B} \\ \delta_{v,A} \\ \delta_{v,Ges} \end{array}$ |                  | 2,50<br>1,00<br>3,50        | %<br>%<br>% |
| Zulässige Verformung:                                                                                                                       |                                                        |                |                               | zul $\delta_{v}$                                                              |                  | 6,00                        | %           |

# Die errechnete Verformung ist kleiner als die zulässige Verformung.

# 1.2.6 Nachweise Langzeit

# 1.2.6.1 Spannungsnachweis (bei minimalem Grundwasser)

| $\sigma_{R,res} = \frac{ \sigma_{qv,qh,qh^*}  \cdot \sigma_R +  \sigma_{sonst}  \cdot \sigma_{R,L}}{ \sigma_{qv,qh,qh^*}  +  \sigma_{sonst} }$ |                           |                                     |                                       |                                  | (9.01c)                 |
|------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|-------------------------------------|---------------------------------------|----------------------------------|-------------------------|
| Erforderlicher Sicherheitsbeiwert, Biegezugsparterforderlicher Sicherheitsbeiwert, Biegedrucks                                                 | •                         |                                     | erf $\gamma_{RBD}$                    | 2,50<br>2,50                     | [-]<br>[-]              |
| Anzusetzende Biegezugfestigkeit<br>Anzusetzende Biegedruckfestigkeit                                                                           | ft,fl,res<br>fc,rad,res   | 15,82<br>15,84                      | 15,83<br>15,78                        | 15,82<br>15,84                   | N/mm²<br>N/mm²          |
| innen                                                                                                                                          |                           |                                     |                                       |                                  |                         |
| Korrekturfaktor Krümmung innen:                                                                                                                |                           |                                     | αki                                   | 1,042                            | [-]                     |
| Spannung aufgrund Erd- u. Verkehrslasten<br>Spannung aufgrund anderer Lasten<br>Spannung gesamt                                                | σqv,qh,qh*<br>σsonst<br>σ | Scheitel<br>1,604<br>0,027<br>1,631 | Kämpfer<br>-2,407<br>-0,033<br>-2,439 | Sohle<br>2,149<br>0,036<br>2,184 | N/mm²<br>N/mm²<br>N/mm² |

| Sicherheitsbeiwert Biegezug:<br>Sicherheitsbeiwert Biegedruck:                                                                                 | YвZ<br>YвD                                             | 9,704                                           | <br>6,489                             | 7,245<br>                           | [-]<br>[-]              |
|------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|-------------------------------------------------|---------------------------------------|-------------------------------------|-------------------------|
| außen                                                                                                                                          |                                                        |                                                 |                                       |                                     |                         |
| Korrekturfaktor Krümmung außen:                                                                                                                |                                                        |                                                 | α <sub>ka</sub>                       | 0,958                               | [-]                     |
| Spannung aufgrund Erd- u. Verkehrslasten<br>Spannung aufgrund anderer Lasten<br>Spannung gesamt                                                | σqν,qh,qh*<br>σsonst<br>σ                              | Scheitel<br>-2,623<br>-0,024<br>-2,647          | Kämpfer<br>0,578<br>0,026<br>0,604    | Sohle<br>-3,212<br>-0,033<br>-3,246 | N/mm²<br>N/mm²<br>N/mm² |
| Sicherheitsbeiwert Biegezug:<br>Sicherheitsbeiwert Biegedruck:                                                                                 | YBZ<br>YBD                                             | <br>5,983                                       | 26,131<br>                            | <br>4,879                           | [-]<br>[-]              |
| Alle errechneten Sicherheitsbeiwerte des Sp                                                                                                    | annungsnachw                                           | eises sind ausre                                | eichend.                              |                                     |                         |
| 1.2.6.2 Spannungsnachweis (bei maximalem                                                                                                       | Grundwasser)                                           |                                                 |                                       |                                     |                         |
| $\sigma_{R,res} = \frac{ \sigma_{qv,qh,qh^*}  \cdot \sigma_R +  \sigma_{sonst}  \cdot \sigma_{R,L}}{ \sigma_{qv,qh,qh^*}  +  \sigma_{sonst} }$ |                                                        |                                                 |                                       |                                     | (9.01c)                 |
| Erforderlicher Sicherheitsbeiwert, Biegezugsp<br>Erforderlicher Sicherheitsbeiwert, Biegedruck                                                 |                                                        |                                                 | erf $\gamma_{RBZ}$ erf $\gamma_{RBD}$ | 2,50<br>2,50                        | [-]<br>[-]              |
| Anzusetzende Biegezugfestigkeit<br>Anzusetzende Biegedruckfestigkeit                                                                           | ft,fl,res<br>fc,rad,res                                | 15,99<br>16,04                                  | 16,00<br>15,79                        | 16,05<br>16,07                      | N/mm²<br>N/mm²          |
| innen                                                                                                                                          |                                                        |                                                 |                                       |                                     |                         |
| Korrekturfaktor Krümmung innen:                                                                                                                |                                                        |                                                 | $\alpha_{ki}$                         | 1,042                               | [-]                     |
| Spannung aufgrund Erd- u. Verkehrslasten<br>Spannung aufgrund anderer Lasten<br>Spannung gesamt                                                | σ <sub>qv,qh,qh</sub> *<br>σ <sub>sonst</sub><br>σ     | Scheitel<br>1,570<br>-0,184<br>1,386            | Kämpfer<br>-2,219<br>-0,243<br>-2,461 | Sohle<br>2,030<br>-0,175<br>1,856   | N/mm²<br>N/mm²<br>N/mm² |
| Sicherheitsbeiwert Biegezug:<br>Sicherheitsbeiwert Biegedruck:                                                                                 | YВZ<br>YBD                                             | 11,537<br>                                      | <br>6,503                             | 8,648<br>                           | [-]<br>[-]              |
| außen                                                                                                                                          |                                                        |                                                 |                                       |                                     |                         |
| Korrekturfaktor Krümmung außen:                                                                                                                |                                                        |                                                 | α <sub>ka</sub>                       | 0,958                               | [-]                     |
| Spannung aufgrund Erd- u. Verkehrslasten<br>Spannung aufgrund anderer Lasten<br>Spannung gesamt                                                | σ <sub>qv,qh,qh</sub> *<br>σ <sub>sonst</sub><br>σ     | Scheitel<br>-2,381<br>-0,211<br>-2,592          | Kämpfer<br>0,657<br>-0,161<br>0,496   | Sohle<br>-2,880<br>-0,220<br>-3,100 | N/mm²<br>N/mm²<br>N/mm² |
| Sicherheitsbeiwert Biegezug:<br>Sicherheitsbeiwert Biegedruck:                                                                                 | YвZ<br>YвD                                             | <br>6,190                                       | 31,835<br>                            | <br>5,183                           | [-]<br>[-]              |
| Alle errechneten Sicherheitsbeiwerte des Sp                                                                                                    | annungsnachw                                           | eises sind ausre                                | eichend.                              |                                     |                         |
| 1.2.6.3 Verformungsnachweis (bei minimaler                                                                                                     | n Grundwasser                                          | ·)                                              |                                       |                                     |                         |
| Rechenmodus:<br>Verhältnis:<br>Verhältnis 'I/(A·rm²)·к~Q':                                                                                     |                                                        |                                                 | linear<br>I/(A·rm²)<br>I/(A·rm²)·кQ   | 0,0013<br>0,0015                    |                         |
| Verformungsbeiwert für Biegemomente<br>Verformungsbeiwert für Normalkräfte<br>Verformungsbeiwert für Querkräfte                                | c <sub>V</sub><br>c <sup>N</sup> v<br>c <sup>Q</sup> v | q <sub>v</sub><br>-0,0893<br>-0,6830<br>-0,3590 | qh 0,0833<br>-0,6810<br>0,3350        | 0,0640<br>-0,2470<br>0,2430         | [-]                     |
| Resultierender Verformungsbeiwert Resultierender Verformungsbeiwert                                                                            | c' <sub>v</sub><br>c' <sub>h</sub>                     | -0,0918<br>0,0902                               | 0,0839<br>-0,0857                     | 0,0647<br>-0,0676                   |                         |

| Vertikale Durchmesseränderung:<br>Horizontale Durchmesseränderung:                                                                                                                                                                                                                                                                                                                                                                                                                             | $\Delta d_V \ \Delta d_h$                                                     | 10,88<br>8,45                                                                                                      | mm<br>mm                                             |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|
| Relative vertikale Verformung (aus Belastung, elastisch, Typ B):<br>Vorverformung (z.B. aus Fertigung, plastisch, Typ A):<br>Vertikale Gesamtverformung (Typ A + Typ B):                                                                                                                                                                                                                                                                                                                       | $\begin{array}{l} \delta_{v,B} \\ \delta_{v,A} \\ \delta_{v,Ges} \end{array}$ | 3,67<br>1,00<br>4,67                                                                                               | %<br>%<br>%                                          |
| Zulässige Verformung:                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | zul $\delta_{\text{V}}$                                                       | 6,00                                                                                                               | %                                                    |
| Die errechnete Verformung ist kleiner als die zulässige Verformung.                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                               |                                                                                                                    |                                                      |
| 1.2.6.4 Verformungsnachweis (bei maximalem Grundwasser)                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                               |                                                                                                                    |                                                      |
| Rechenmodus:<br>Verhältnis:<br>Verhältnis 'I/(A·rm²)·κ~Q':                                                                                                                                                                                                                                                                                                                                                                                                                                     | linear<br>I/(A·rm²)<br>I/(A·rm²)⋅κ <sub>Q</sub>                               | 0,00133<br>0,00159                                                                                                 |                                                      |
| Verformungsbeiwert für Normalkräfte c <sup>N</sup> <sub>V</sub> -0,                                                                                                                                                                                                                                                                                                                                                                                                                            | q <sub>h</sub> 0893 0,0833 6830 -0,6810 3590 0,3350                           | -0,2470                                                                                                            | [-]<br>[-]<br>[-]                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0,0839<br>0902 -0,0857                                                        |                                                                                                                    | [-]<br>[-]                                           |
| Vertikale Durchmesseränderung:<br>Horizontale Durchmesseränderung:                                                                                                                                                                                                                                                                                                                                                                                                                             | $\Delta d_V \ \Delta d_h$                                                     | 9,14<br>7,28                                                                                                       | mm<br>mm                                             |
| Relative vertikale Verformung (aus Belastung, elastisch, Typ B):<br>Vorverformung (z.B. aus Fertigung, plastisch, Typ A):<br>Vertikale Gesamtverformung (Typ A + Typ B):                                                                                                                                                                                                                                                                                                                       | $\begin{array}{l} \delta_{V,B} \\ \delta_{V,A} \\ \delta_{V,Ges} \end{array}$ | 3,08<br>1,00<br>4,08                                                                                               | %<br>%<br>%                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                               |                                                                                                                    |                                                      |
| Zulässige Verformung:                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | zul $\delta_{V}$                                                              | 6,00                                                                                                               | %                                                    |
| Zulässige Verformung:  Die errechnete Verformung ist kleiner als die zulässige Verformung.                                                                                                                                                                                                                                                                                                                                                                                                     | zul δ <sub>v</sub>                                                            | 6,00                                                                                                               | %                                                    |
| Die errechnete Verformung ist kleiner als die zulässige Verformung.                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                               | 6,00                                                                                                               | %                                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                               | 60.887<br>2,700<br>0,0226<br>0,86<br>35,000<br>699,5<br>90,92                                                      | %<br>N/m²<br>N/mm²<br>[-]<br>[-]<br>kN/m²<br>kN/m²   |
| Die errechnete Verformung ist kleiner als die zulässige Verformung.  1.2.6.5 Nachweis Stabilität radial, linear (bei maximalem Grundwasse Erd- und Verkehrslasten Rohrsteifigkeit: Horizontale Bettungssteifigkeit: Systemsteifigkeit, gewichtet: Abminderungsfaktor Beullast bei Erd-/Verkehrslasten: Reibungswinkel in der Leitungszone: Kritische vertikale Gesamtlast: Vertikale Gesamtlast: Beulsicherheitsbeiwert (vertikale Gesamtlast):                                                | SR<br>SBh<br>VRB,w<br>κν2<br>φ'2<br>krit q <sub>v</sub><br>qv                 | 60.887<br>2,700<br>0,0226<br>0,86<br>35,000<br>699,5<br>90,92                                                      | N/m²<br>N/mm²<br>[-]<br>[-]<br>kN/m²<br>kN/m²        |
| Die errechnete Verformung ist kleiner als die zulässige Verformung.  1.2.6.5 Nachweis Stabilität radial, linear (bei maximalem Grundwasse Erd- und Verkehrslasten Rohrsteifigkeit: Horizontale Bettungssteifigkeit: Systemsteifigkeit, gewichtet: Abminderungsfaktor Beullast bei Erd-/Verkehrslasten: Reibungswinkel in der Leitungszone: Kritische vertikale Gesamtlast: Vertikale Gesamtlast: Beulsicherheitsbeiwert (vertikale Gesamtlast):  Wasserdruck + Unterdruck Äußerer Wasserdruck: | SR SBh VRB,w Kv2                                                              | 60.887<br>2,700<br>0,0226<br>0,86<br>35,000<br>699,5<br>90,92<br>7,69<br>23,50<br>0,00<br>26.814<br>0,0099<br>7,92 | N/m²<br>N/mm²<br>[-]<br>[-]<br>kN/m²<br>kN/m²<br>[-] |

krit pa

**γ**Stab,pa

p<sub>a+l</sub>-

204,330

23,50 8,695 kN/m²

 $kN/m^2$ 

[-]

Wasserdruck + Unterdruck im Rohr:

Beulsicherheitsbeiwert Druck:

Kritischer Druck:

### Superposition

Sicherheit Stabilität, radial: YStab,rad 4,08 [-]
Erforderlicher Sicherheitsbeiwert, Instabilität: erf ystab 2,50 [-]

### Der Stabilitätsnachweis ist erbracht.

### 1.2.6.6 Stabilitätsnachweis, nichtlinear (bei minimalem Grundwasser)

Der nichtlineare Stabilitätsnachweis entfällt, da VRB > 1.0 (biegesteifes Rohr) oder relative vertikale Verformung < 6%.

# 1.2.6.7 Stabilitätsnachweis, nichtlinear (bei maximalem Grundwasser)

Der nichtlineare Stabilitätsnachweis entfällt, da VRB > 1.0 (biegesteifes Rohr) oder relative vertikale Verformung < 6%.

# 1.2.6.8 Nachweis der Sicherheit gegen Versagen bei nicht vorwiegend ruhender Belastung

Nach Norm ist der dynamische Nachweis nicht notwendig (z.B. bei Straßenverkehrslasten > 1,5 m).

Alle notwendigen Nachweise sind erbracht.

# **Statische Berechnung**

Bauvorhaben: A 070 "Juraleitung" Teilabschnitt Katzwang

Beschreibung: Erdverkabelungsabschnitt Wolkersdorf - Katzwang

Abschnitt: Erdkabelgraben, Baustelleneinrichtungsfläche / Baustraße

1

Baufeld: Ost / Katzwang

Auftraggeber: TenneT TSO GmbH

Bernecker Str. 70 95448 Bayreuth

Ingenieurgemeinschaft Katzwangtunnel (IGKWT) Moll-prd GmbH & Co. KG Bearbeiter:

Weststraße 2

57392 Schmallenberg

Dipl.-Ing. (FH) Philipp Dick

Statik-Nr.: 80-23-0269, Entwurfsstatik Erdkabelabschnitt

Datum: 22.01.2025

# Inhaltsangabe

| 1 Statik nach ATV-DVWK-A 127, 3.Auflage: Entwurfsstatik der Kabelschutzrohre im erdverlegten Abschnitt Katzwang        |
|------------------------------------------------------------------------------------------------------------------------|
| 1.1 Eingaben                                                                                                           |
| 1.1.1 Sicherheiten                                                                                                     |
| 1.1.2 Boden                                                                                                            |
| 1.1.3 Belastung                                                                                                        |
| 1.1.4 Einbau 5                                                                                                         |
| 1.1.5 Vollwand/Profil-Rohr                                                                                             |
| 1.1.5.1 Thermoplast                                                                                                    |
| 1.2 Ergebnisse                                                                                                         |
| 1.2.1 Zwischenergebnisse Rohr                                                                                          |
| 1.2.1.1 Materialeigenschaften                                                                                          |
| 1.2.1.2 Sicherheiten 1.2.1.3 Mindestgrabenbreite nach DIN EN 1610:2015-12                                              |
| 1.2.1.3 Mindestgrabenbreite nach DIN EN 1610:2015-12  1.2.2 Zwischenergebnisse bei minimalem Grundwasser               |
| 1.2.2.1 Silotheorie                                                                                                    |
| 1.2.2.2 Belastung                                                                                                      |
| 1.2.2.3 Boden-Verformungsmoduln EB                                                                                     |
| 1.2.2.4 Bodensteifigkeiten 1.2.2.5 Auflagerwinkel, wirksame Ausladung und Reibungswinkel                               |
| 1.2.2.6 Rohrwerkstoffkennwerte und Ringsteifigkeit                                                                     |
| 1.2.2.7 Steifigkeitsverhältnisse                                                                                       |
| 1.2.2.8 Beiwerte                                                                                                       |
| 1.2.2.9 Konzentrationsfaktoren λR und λB<br>1.2.2.10 Druckverteilung am Rohrumfang                                     |
| 1.2.3 Zwischenergebnisse bei maximalem Grundwasser                                                                     |
| 1.2.3.1 Silotheorie                                                                                                    |
| 1.2.3.2 Belastung                                                                                                      |
| 1.2.3.3 Boden-Verformungsmoduln EB                                                                                     |
| 1.2.3.4 Bodensteifigkeiten 9<br>1.2.3.5 Auflagerwinkel, wirksame Ausladung und Reibungswinkel 9                        |
| 1.2.3.6 Rohrwerkstoffkennwerte und Ringsteifigkeit                                                                     |
| 1.2.3.7 Steifigkeitsverhältnisse                                                                                       |
| 1.2.3.8 Beiwerte 10<br>1.2.3.9 Konzentrationsfaktoren λR und λΒ 10                                                     |
| 1.2.3.10 Druckverteilung am Rohrumfang                                                                                 |
| 1.2.4 Schnittkräfte                                                                                                    |
| 1.2.4.1 Schnittkräfte bei minimalem Grundwasser, Kurzzeit                                                              |
| 1.2.4.2 Schnittkräfte bei minimalem Grundwasser, Langzeit                                                              |
| 1.2.4.3 Schnittkräfte bei maximalem Grundwasser, Kurzzeit 1.2.4.4 Schnittkräfte bei maximalem Grundwasser, Langzeit 12 |
| 1.2.5 Nachweise Kurzzeit                                                                                               |
| 1.2.5.1 Spannungsnachweis (bei minimalem Grundwasser)                                                                  |
| 1.2.5.2 Spannungsnachweis (bei maximalem Grundwasser)                                                                  |
| 1.2.5.3 Verformungsnachweis (bei minimalem Grundwasser) 13 1.2.5.4 Verformungsnachweis (bei maximalem Grundwasser) 14  |
| 1.2.6 Nachweise Langzeit                                                                                               |
| 1.2.6.1 Spannungsnachweis (bei minimalem Grundwasser)                                                                  |

| 1.2.6.2 Spannungsnachweis (bei maximalem Grundwasser)                        | 15 |
|------------------------------------------------------------------------------|----|
| 1.2.6.3 Verformungsnachweis (bei minimalem Grundwasser)                      | 15 |
| 1.2.6.4 Verformungsnachweis (bei maximalem Grundwasser)                      | 15 |
| 1.2.6.5 Nachweis Stabilität radial, linear (bei maximalem Grundwasser)       | 16 |
| 1.2.6.6 Stabilitätsnachweis, nichtlinear (bei minimalem Grundwasser)         | 16 |
| 1.2.6.7 Stabilitätsnachweis, nichtlinear (bei maximalem Grundwasser)         | 16 |
| 1.2.6.8 Nachweis der Sicherheit gegen Versagen bei nicht vorwiegend ruhender | 16 |

# 1 Statik nach ATV-DVWK-A 127, 3.Auflage: Entwurfsstatik der Kabelschutzrohre im erdverlegten Abschnitt Katzwang

Titel der Teilstatik: Entwurfsstatik der Kabelschutzrohre im erdverlegten Abschnitt Katzwang

Annahmen: Die Vordimensionierung erfolgte auf Basis folgender Annahmen:

- Verlegung der Kabelschutzrohre im Regelgraben, geböscht mit 45°

- Mindestdurchmesser entsprechend Handbuch Bauen und Errichten, Kapitel 2.2.1.1.7: 253 mm
- nachzuweisende Kabelschutzrohre DA 280, SDR 21
- Belastung der Kabelschutzrohre durch Befahrung, SLW 60, im Bau- und Betriebszustand
- keine Abminderung der Standfestigkeit aufgrund der Kabeltemperatur im Betriebszustand, da
- Rohre mit erhöhter Temperaturbeständigkeit eingesetzt werden. Grabenbreite in Scheitelhöhe angenommen mit 1,5 m
- Nenntiefe Rohrachse: 1,70 m zzgl. 10 cm Verlegetoleranz
- Baugrundinformationen aus Bericht Dr. Spang, 13.06.2024
- anstehender Boden: Schicht 2.2, Verwitterungsboden, gemischtkörnig

Schlussfolgerungen: Die Nachweise für den Bau- und Betriebszustand für die Kabelschuztrohre, DA 280, werden unter

Berücksichtigung vorstehender Annahmen erbracht.

Berechnungsart: Vollwand-/Profilrohr

Skizzen (Einbau/Rohr) in Ausdruck: Ja

# 1.1 Eingaben

#### 1.1.1 Sicherheiten

Sicherheitsklasse: A (Regelfall)

Sicherheit Stabilität nach Tabelle 13: Ohne Vorverformungen (2,5 / 2,0)

Zulässige Verformung: 6% (Regelfall)

Behandlung von Innendruck: Gemäß Fußnote des ATV-DVWK-A 127

G1

Kleinere Biegedruck-Sicherheiten: Nein (ATV-DVWK-A 127)

Nachweis bei nicht vorwiegend ruhender Belastung:

Nach Regelwerk

Berücksichtigung von dyn pvh\*:

Nach Norm

Berücksichtigung der Vorverformungen Typ A in Verformungsnachweis: Ja

Behandlung Systemsteifigkeit VRB nach: ATV-DVWK-A 127:2000 (nach

Rechenwert)

Rohrsteifigkeit nach Regelwerk:

### 1.1.2 **Boden**

Bodengruppe Verfüllung:

Berechnung E1: Tabelle 8 (A127)

Bodengruppe Einbettung: G1

Berechnung E20: Tabelle 8 (A127)
Bodengruppe anstehender Boden: G2

Berechnung E3: E-Modul

E-Modul E3: E3 25,00 N/mm² E4 = 10 · E1: Ja

Anwendung von Silotheorie:

K2 nach Norm:

Nein

Ja

# 1.1.3 Belastung

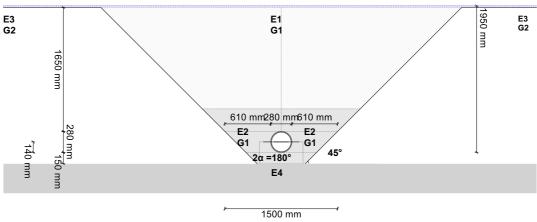
| Überdeckungshöhe:                                                 | h                  | 1,65 | m     |
|-------------------------------------------------------------------|--------------------|------|-------|
| Minimaler Grundwasserstand über Sohle:                            | hw, <sub>min</sub> | 0,00 | m     |
| Maximaler Grundwasserstand über Sohle:                            | h <sub>W,max</sub> | 1,95 | m     |
| Auftriebsnachweis führen:                                         | Nein               |      |       |
| Wichte des Bodens:                                                | γв                 | 20,0 | kN/m³ |
| Manuelle Angabe der Wichte des Bodens unter Auftrieb:             | Nein               |      |       |
| Zusätzliche Flächenlast:                                          | p <sub>0</sub>     | 0,0  | kN/m² |
| Innendruck, kurzzeitig wirkend:                                   | $P_{I,K}$          | 0,00 | bar   |
| Innendruck, langzeitig:                                           | P <sub>I,L</sub>   | 0,00 | bar   |
| Wasserfüllung (z.B. Staukanal):                                   | Nein               |      |       |
| Verkehrslast:                                                     | Straße SLW 60      |      |       |
| Ansatz horizontaler Belastungen aus Verkehr im Ermüdungsnachweis: | $\alpha_{qhT,dyn}$ | 0,00 | %     |
|                                                                   |                    |      |       |

### 1.1.4 Einbau

| Einbauweise:                                      | Graben           |       |   |
|---------------------------------------------------|------------------|-------|---|
| Grabenbreite in Scheitelhöhe:                     | b                | 1,50  | m |
| Mindestgrabenbreite prüfen:                       | Nein             |       |   |
| Stärke der Bettungsschicht automatisch ermitteln: | Ja               |       |   |
| Böschungswinkel:                                  | ß                | 45    | 0 |
| Überschüttungsbedingung:                          | A1               |       |   |
| Einbettungsbedingung:                             | B1               |       |   |
| Auflagerart:                                      | Lose             |       |   |
| Auflagerwinkel:                                   | 180°             |       |   |
| Relative Ausladung automatisch ermitteln:         | Ja               |       |   |
| Untere Sockelhöhe vorgeben:                       | Ja               |       |   |
| Höhe des unteren Teils des Sockels:               | h <sub>s,u</sub> | 0,150 | m |

# 1.1.5 Vollwand/Profil-Rohr

| Rohrauswahl:          | Vollwand       |       |    |
|-----------------------|----------------|-------|----|
| Material-Klasse:      | Thermoplast    |       |    |
| Vorverformung Typ A:  | $\delta_{V,A}$ | 1,0   | %  |
| Lokale Vorverformung: | $\delta_{v,l}$ | 0,0   | %  |
| Auswahl der Eingaben: | Da und s       |       |    |
| Außendurchmesser:     | da             | 280,0 | mm |
| Wandstärke:           | S              | 13,4  | mm |


Perforation: Ohne Perforation

# 1.1.5.1 Thermoplast

Nach ATV / DWA PE-HD Auswahl Material:

Material: Grund der Abminderung: Keine

# Verkehrslast: Straße SLW 60



280 mm 940 mm 280 mm

# 1.2 Ergebnisse

| 1.2.1 Zwischenergebnisse Rohr                                                                                                                                                            |                                                           |                                                                                                        |                                                              |                                             |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------|--------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|---------------------------------------------|
| Innendurchmesser: Außendurchmesser: Mittlerer Radius: Wanddicke: Verhältnis Radius zu Wanddicke: Korrekturfaktor Krümmung innen: Korrekturfaktor Krümmung außen:                         |                                                           | d <sub>i</sub><br>da<br>r <sub>m</sub><br>s<br>r <sub>m</sub> /s<br>α <sub>ki</sub><br>α <sub>ka</sub> | 253,2<br>280,0<br>133,30<br>13,40<br>9,948<br>1,034<br>0,966 | mm<br>mm<br>mm<br>[-]<br>[-]                |
| Lokale Vorverformung:<br>Vorverformung (Ovalisierung vor Last):                                                                                                                          |                                                           | $\begin{array}{l} \delta_{V,I} \\ \delta_{V,A} \end{array}$                                            | 0,00<br>1,00                                                 | %<br>%                                      |
| Radiale Profilfläche: Trägheitsabstand: Trägheitsmoment: Äußeres Widerstandsmoment: Inneres Widerstandsmoment: Flächenverhältnis:                                                        |                                                           | A <sub>rad</sub><br>e<br>I<br>Wa<br>Wi<br>KQ                                                           | 13,40<br>6,70<br>200,51<br>29,93<br>29,93<br>1,2             | mm²/mm<br>mm<br>mm^4/mm<br>mm³/mm<br>mm³/mm |
| 1.2.1.1 Materialeigenschaften                                                                                                                                                            |                                                           |                                                                                                        |                                                              |                                             |
| Wichte des Rohrwerkstoffs<br>Querkontraktionszahl<br>Elastizitätsmodul in Ringrichtung                                                                                                   | γR<br>v<br>E <sub>R,rad</sub>                             | Kurzzeit<br>9,4<br>0,38<br>800,0                                                                       | Langzeit<br>9,4<br>0,38<br>160,0                             | kN/m³<br>[-]<br>N/mm²                       |
| Radiale Biegezugfestigkeit<br>Radiale Biegedruckfestigkeit<br>Ringzugfestigkeit                                                                                                          | f <sub>t,fl</sub><br>f <sub>c,rad</sub><br>f <sub>t</sub> | 21,0<br>21,0<br>12,6                                                                                   | 14,0<br>14,0<br>8,4                                          | N/mm²<br>N/mm²<br>N/mm²                     |
| Schwingbreite bei 2·10^6 Lastspielen:<br>Schwingbreite bei 5·10^6 Lastspielen:<br>Schwingbreite bei 1·10^8 Lastspielen:                                                                  |                                                           | $\Delta\sigma_{rsk,2E6}$<br>$\Delta\sigma_{rsk,5E6}$<br>$\Delta\sigma_{rsk,1E8}$                       | n. def.<br>n. def.<br>n. def.                                | N/mm²<br>N/mm²<br>N/mm²                     |
| 1.2.1.2 Sicherheiten                                                                                                                                                                     |                                                           |                                                                                                        |                                                              |                                             |
| Erforderlicher Sicherheitsbeiwert, Biegezugspannungen<br>Erforderlicher Sicherheitsbeiwert, Biegedruckspannungen<br>Erforderlicher Sicherheitsbeiwert, Instabilität                      | erf $\gamma_{RBZ}$ erf $\gamma_{RBD}$ erf $\gamma_{Stab}$ | 2,50<br>2,50<br>2,50                                                                                   | 2,50<br>2,50<br>2,50                                         | [-]<br>[-]<br>[-]                           |
| 1.2.1.3 Mindestgrabenbreite nach DIN EN 1610:2015-12                                                                                                                                     |                                                           |                                                                                                        |                                                              |                                             |
| Die Mindestgrabenbreite nach DIN EN 1610 / DWA-A 139 wird nicht überprüf                                                                                                                 | t.                                                        |                                                                                                        |                                                              |                                             |
| 1.2.2 Zwischenergebnisse bei minimalem Grundwasser                                                                                                                                       |                                                           |                                                                                                        |                                                              |                                             |
| 1.2.2.1 Silotheorie                                                                                                                                                                      |                                                           |                                                                                                        |                                                              |                                             |
| Erdlastbeiwert κ für Grabenlast (Silotheorie):<br>Erdlastbeiwert κ0 für Flächenlast (Silotheorie):                                                                                       |                                                           | κ<br>κ <sub>0</sub>                                                                                    | 1,000<br>1,000                                               | [-]<br>[-]                                  |
| 1.2.2.2 Belastung                                                                                                                                                                        |                                                           |                                                                                                        |                                                              |                                             |
| Grundwasserstand über Scheitel: Vertikale Bodenspannung aufgrund Erdlast: Vertikale Bodenspannung aufgrund Erd- und Flächenlast: Spannung aufgrund Verkehrslast: Enthaltener Stoßfaktor: |                                                           | hw,scheitel<br>PErd<br>PE<br>P∨<br>φ                                                                   | 0,00<br>33,00<br>33,00<br>34,39<br>1,20                      | m<br>kN/m²<br>kN/m²<br>kN/m²<br>[-]         |
| 1.2.2.3 Boden-Verformungsmoduln EB                                                                                                                                                       |                                                           |                                                                                                        |                                                              |                                             |
| E-Modul Verfüllung unter Last:                                                                                                                                                           |                                                           | Ε <sub>1,σ</sub>                                                                                       | 16,00                                                        | N/mm²                                       |

| E-Modul anstehender Boden: E-Modul Einbettung (abgemindert): E-Modul Einbettung unter Last: Reduktionsfaktor für das Kriechen: Verdichtungsgrad aus Tabelle 8: Abminderungsfaktor E20 (Grundwasser): Abminderungsfaktor E20 (enger Graben): |                                                               |                                               | $E_{3,\sigma}$ $E_{2,\sigma}$ $E_{20,\sigma}$ $f_1$ $D_{pr,E20}$ $f_2$ $\alpha_B$ | 25,00<br>16,00<br>16,00<br>1,000<br>0,95<br>1,000<br>1,000 | N/mm²<br>N/mm²<br>N/mm²<br>[-]<br>[-]<br>[-] |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------|-----------------------------------------------|-----------------------------------------------------------------------------------|------------------------------------------------------------|----------------------------------------------|
| Bei einem Verhältnis (Breite Graben/Außendurchmesser)                                                                                                                                                                                       | >= 4, ergibt die                                              | Formel 6.03 immer de                          | en Wert 1,0.                                                                      |                                                            |                                              |
| E-Modul Einbettung (abgemindert):<br>E-Modul Boden unter dem Rohr:                                                                                                                                                                          |                                                               |                                               | Ε <sub>2,σ</sub><br>Ε <sub>4,σ</sub>                                              | 16,00<br>160,00                                            | N/mm²<br>N/mm²                               |
| 1.2.2.4 Bodensteifigkeiten                                                                                                                                                                                                                  |                                                               |                                               |                                                                                   |                                                            |                                              |
| Hilfswert für horizontale Bettungssteifigkeit:<br>Korrekturfaktor für die horizontale Bettungsste<br>Bei geböschten Gräben ist hier anstelle der Grabenbreite<br>Horizontale Bettungssteifigkeit:<br>Vertikale Bettungssteifigkeit:         |                                                               | die Grabenbreite in K                         | $\Delta_{ m f}$ $\zeta$<br>(ämpferhöhe einzust<br>SBh<br>SBv                      | 1,667<br>1,000<br>tetzen.<br>9,600<br>10,419               | [-]<br>[-]<br>N/mm²<br>N/mm²                 |
| 1.2.2.5 Auflagerwinkel, wirksame Ausladung u                                                                                                                                                                                                | und Reibungs                                                  | winkel                                        |                                                                                   |                                                            |                                              |
| Auflagerwinkel: Höhe Auflager von Auflagerwinkel bis UK Roh Höhe untere Bettungsschickt UK Rohr bis Gra Berechnete Ausladung: Wirksame Ausladung: Innerer Reibungswinkel: Wandreibungswinkel:                                               | nr:                                                           |                                               | 2α<br>t <sub>r</sub><br>h <sub>su</sub><br>a<br>a'<br>φ'<br>δ                     | 180<br>0,140<br>0,150<br>1,54<br>1,536<br>30,000<br>20,000 | o<br>m<br>m<br>[-]<br>[-]                    |
|                                                                                                                                                                                                                                             |                                                               | Kurzzeit<br>alle Lasten                       | Langzeit<br>Erdlasten<br>Verkehrslast                                             | Langzeit<br>sonstige<br>Lasten                             |                                              |
| 1.2.2.6 Rohrwerkstoffkennwerte und Ringsteif                                                                                                                                                                                                | <u>igkeit</u>                                                 |                                               |                                                                                   |                                                            |                                              |
| Elastizitätsmodul in Ringrichtung<br>Radiale Biegezugfestigkeit<br>Radiale Biegedruckfestigkeit                                                                                                                                             | E <sub>R,rad</sub><br>f <sub>t,fl</sub><br>f <sub>c,rad</sub> | 800,0<br>21,0<br>21,0                         | 486,6<br>17,6<br>17,6                                                             | 160,0<br>14,0<br>14,0                                      | N/mm²<br>N/mm²<br>N/mm²                      |
| Rohrsteifigkeit                                                                                                                                                                                                                             | SR                                                            | 67.722                                        | 41.191                                                                            | 13.544                                                     | N/m²                                         |
| 1.2.2.7 Steifigkeitsverhältnisse                                                                                                                                                                                                            |                                                               |                                               |                                                                                   |                                                            |                                              |
| Systemsteifigkeit, gewichtet<br>Steifigkeitsverhältnis<br>Beiwert für die vertikale Verformung                                                                                                                                              | V <sub>RB,w</sub><br>V <sub>S</sub><br>c <sub>v</sub> *       | 0,0071<br>0,5590<br>-0,012                    | 0,0043<br>0,4498<br>-0,009                                                        | 0,0014<br>                                                 | [-]<br>[-]<br>[-]                            |
| <u>1.2.2.8 Beiwerte</u>                                                                                                                                                                                                                     |                                                               |                                               |                                                                                   |                                                            |                                              |
| Erdruckbeiwert (Einbettung) Beiwert für den Bettungsreaktionsdruck Resultierender Verformungsbeiwert Resultierender Verformungsbeiwert Beiwert für die vertikale Verformung                                                                 | K2<br>K*<br>c'h<br>c'h,qh*<br>c <sub>V</sub> *                | 0,400<br>1,135<br>0,0839<br>-0,0669<br>-0,012 | 0,400<br>1,179<br>0,0839<br>-0,0669<br>-0,009                                     | <br><br><br>                                               | [-]<br>[-]<br>[-]<br>[-]                     |
| 1.2.2.9 Konzentrationsfaktoren λR und λB                                                                                                                                                                                                    |                                                               |                                               |                                                                                   |                                                            |                                              |
| Maximaler Konzentrationsfaktor<br>Beiwert für maximalen Konzentrationsfaktor<br>Konzentrationsfaktor über Rohr, Startwert<br>Konzentrationsfaktor über Rohr, unter<br>Grabeneinfluss                                                        | max λ<br>K'<br>λ <sub>R</sub><br>λ <sub>RG</sub>              | 2,059<br>0,839<br>0,874<br>0,874              | 2,059<br>0,784<br>0,788<br>0,788                                                  | <br><br>                                                   | [-]<br>[-]<br>[-]                            |
| Konzentrationsfaktor über Rohr, oberer                                                                                                                                                                                                      | $\lambda_{fo}$                                                | 3,753                                         | 3,753                                                                             |                                                            | [-]                                          |
| Grenzwert                                                                                                                                                                                                                                   |                                                               |                                               |                                                                                   |                                                            |                                              |

| Konzentrationsfaktor über Rohr, endgültiger Wert Konzentrationsfaktor Boden λB  1.2.2.10 Druckverteilung am Rohrumfang  Vertikale Gesamtlast qv Seitendruck qh Bettungsreaktionsdruck (Erdlasten) q*h Bettungsreaktionsdruck (Wasserfüllung) q*hw  1.2.3 Zwischenergebnisse bei maximalem Grundwasser  1.2.3.1 Silotheorie  Erdlastbeiwert κ für Grabenlast (Silotheorie): Erdlastbeiwert κ für Grabenlast (Silotheorie): 1.2.3.2 Belastung  Grundwasserstand über Scheitel: Wichte Verfüllung unter Wasser: Vertikale Bodenspannung aufgrund Erd- und Flächenlast: Spannung aufgrund Verkehrslast: Enthaltener Stoßfaktor:  1.2.3.3 Boden-Verformungsmoduln EB  E-Modul Verfüllung unter Last: E-Modul Einbettung (abgemindert): E-Modul Einbettung unter Last: Reduktionsfaktor für das Kriechen: Verdichtungsgrad aus Tabelle 8: Abminderungsfaktor E20 (Grundwasser): Abminderungsfaktor E20 (enger Graben):  Bei einem Verhältnis (Breite Graben/Außendurchmesser) >= 4, ergibt die Foton der Steiner Verdichtungsgrad aus Tabelle 8: -Modul Einbettung (abgemindert): E-Modul Einbettung (abgemindert): E-Modul Boden unter dem Rohr:  1.2.3.4 Bodensteifigkeiten  Hilfswert für horizontale Bettungssteifigkeit: Korrekturfaktor für die horizontale Bettungssteifigkeit: Bei geböschten Gräben ist hier anstelle der Grabenbreite in Scheitelhöhe di Horizontale Bettungssteifigkeit: Vertikale Bettungssteifigkeit: 1.2.3.5 Auflagerwinkel, wirksame Ausladung und Reibungsw                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0,874<br>1,042<br>Kurzzeit<br>alle Lasten<br>63,22<br>14,88<br>54,68<br>0,00 | 0,788 1,071  Langzeit Erdlasten Verkehrslast 60,38 15,25 53,01 0,00  K K0  hw,Scheitel Y' PErd PE PV \$\phi\$        | Langzeit sonstige Lasten 1,000 1,000 1,65 11,00 18,15 18,15 34,39 1,20 | [-]  kN/m² kN/m² kN/m² kN/m²  [-]  [-]  m kN/m³ kN/m² kN/m² kN/m² |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------|-------------------------------------------------------------------|
| Konzentrationsfaktor Boden  1.2.2.10 Druckverteilung am Rohrumfang  Vertikale Gesamtlast Seitendruck Seitendruck Bettungsreaktionsdruck (Erdlasten) Bettungsreaktionsdruck (Wasserfüllung)  1.2.3 Zwischenergebnisse bei maximalem Grundwasser  1.2.3.1 Silotheorie  Erdlastbeiwert κ für Grabenlast (Silotheorie): Erdlastbeiwert κ für Grabenlast (Silotheorie):  1.2.3.2 Belastung  Grundwasserstand über Scheitel: Wichte Verfüllung unter Wasser: Vertikale Bodenspannung aufgrund Erdlast: Vertikale Bodenspannung aufgrund Erd- und Flächenlast: Spannung aufgrund Verkehrslast: Enthaltener Stoßfaktor:  1.2.3.3 Boden-Verformungsmoduln EB  E-Modul Verfüllung unter Last: E-Modul Binbettung (abgemindert): E-Modul Einbettung (at as Kriechen: Verdichtungsgrad aus Tabelle 8: Abminderungsfaktor E20 (Grundwasser): Abminderungsfaktor E20 (enger Graben):  Bei einem Verhältnis (Breite Graben/Außendurchmesser) >= 4, ergibt die Foten in Scheitelhöhe die Hilfswert für horizontale Bettungssteifigkeit: Korrekturfaktor für die horizontale Bettungssteifigkeit: Bei geböschten Gräben ist hier anstelle der Grabenbreite in Scheitelhöhe die Horizontale Bettungssteifigkeit: Vertikale Bettungssteifigkeit: Vertikale Bettungssteifigkeit: Vertikale Bettungssteifigkeit:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Kurzzeit<br>alle Lasten<br>63,22<br>14,88<br>54,68                           | Langzeit Erdlasten Verkehrslast  60,38 15,25 53,01 0,00  K K K0  hW,Scheitel Y' PErd PE PV \$\psi\$                  | Langzeit sonstige Lasten 1,000 1,000 1,65 11,00 18,15 18,15 34,39      | kN/m² kN/m² kN/m² kN/m²  [-] [-]  m kN/m³ kN/m² kN/m² kN/m²       |
| Vertikale Gesamtlast Seitendruck Seitendruck Bettungsreaktionsdruck (Erdlasten) Bettungsreaktionsdruck (Wasserfüllung)  1.2.3 Zwischenergebnisse bei maximalem Grundwasser  1.2.3.1 Silotheorie Erdlastbeiwert κ für Grabenlast (Silotheorie): Erdlastbeiwert κ für Grabenlast (Silotheorie): Erdlastbeiwert κ für Grabenlast (Silotheorie):  1.2.3.2 Belastung Grundwasserstand über Scheitel: Wichte Verfüllung unter Wasser: Vertikale Bodenspannung aufgrund Erd- und Flächenlast: Spannung aufgrund Verkehrslast: Enthaltener Stoßfaktor:  1.2.3.3 Boden-Verformungsmoduln EB  E-Modul Verfüllung unter Last: E-Modul Binbettung (abgemindert): E-Modul Einbettung unter Last: Reduktionsfaktor für das Kriechen: Verdichtungsgrad aus Tabelle 8: Abminderungsfaktor E20 (Grundwasser): Abminderungsfaktor E20 (enger Graben): Bei einem Verhältnis (Breite Graben/Außendurchmesser) >= 4, ergibt die Foten in der Stein sich iher anstelle der Grabenbreite in Scheitelhöhe die Horizontale Bettungssteifigkeit: Korrekturfaktor für die horizontale Bettungssteifigkeit: Bei geböschten Gräben ist hier anstelle der Grabenbreite in Scheitelhöhe die Horizontale Bettungssteifigkeit: Vertikale Bettungssteifigkeit: Vertikale Bettungssteifigkeit:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 63,22<br>14,88<br>54,68                                                      | Erdlasten Verkehrslast  60,38 15,25 53,01 0,00  K K K0  hw,scheitel Y' PErd PE PV \$\phi\$                           | sonstige<br>Lasten 1,000 1,000 1,65 11,00 18,15 18,15 34,39            | kN/m²<br>kN/m²<br>kN/m²                                           |
| Seitendruck Bettungsreaktionsdruck (Erdlasten) Bettungsreaktionsdruck (Wasserfüllung)  1.2.3 Zwischenergebnisse bei maximalem Grundwasser  1.2.3.1 Silotheorie Erdlastbeiwert κ für Grabenlast (Silotheorie): Erdlastbeiwert κ für Flächenlast (Silotheorie): I.2.3.2 Belastung Grundwasserstand über Scheitel: Wichte Verfüllung unter Wasser: Vertikale Bodenspannung aufgrund Erdlast: Vertikale Bodenspannung aufgrund Erd- und Flächenlast: Spannung aufgrund Verkehrslast: Enthaltener Stoßfaktor:  1.2.3.3 Boden-Verformungsmoduln EB E-Modul Verfüllung unter Last: E-Modul Einbettung (abgemindert): E-Modul Einbettung (abgemindert): E-Modul Einbettung unter Last: Reduktionsfaktor für das Kriechen: Verdichtungsgrad aus Tabelle 8: Abminderungsfaktor E20 (Grundwasser): Abminderungsfaktor E20 (enger Graben): Bei einem Verhältnis (Breite Graben/Außendurchmesser) >= 4, ergibt die Foten im Verhältnis (Breite Graben/Außendurchmesser) >= 4, ergibt die Foten im Verhältnis (Breite Graben/Außendurchmesser) >= 4, ergibt die Foten im Verhältnis (Breite Graben/Bettungssteifigkeit: Korrekturfaktor für die horizontale Bettungssteifigkeit: Bei geböschten Gräben ist hier anstelle der Grabenbreite in Scheitelhöhe di Horizontale Bettungssteifigkeit: Vertikale Bettungssteifigkeit: Vertikale Bettungssteifigkeit:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 63,22<br>14,88<br>54,68                                                      | Erdlasten Verkehrslast  60,38 15,25 53,01 0,00  K K K0  hw,scheitel Y' PErd PE PV \$\phi\$                           | sonstige<br>Lasten 1,000 1,000 1,65 11,00 18,15 18,15 34,39            | kN/m²<br>kN/m²<br>kN/m²                                           |
| Seitendruck Bettungsreaktionsdruck (Erdlasten) Bettungsreaktionsdruck (Wasserfüllung)  1.2.3 Zwischenergebnisse bei maximalem Grundwasser  1.2.3.1 Silotheorie Erdlastbeiwert κ für Grabenlast (Silotheorie): Erdlastbeiwert κ für Flächenlast (Silotheorie): I.2.3.2 Belastung Grundwasserstand über Scheitel: Wichte Verfüllung unter Wasser: Vertikale Bodenspannung aufgrund Erdlast: Vertikale Bodenspannung aufgrund Erd- und Flächenlast: Spannung aufgrund Verkehrslast: Enthaltener Stoßfaktor:  1.2.3.3 Boden-Verformungsmoduln EB E-Modul Verfüllung unter Last: E-Modul Einbettung (abgemindert): E-Modul Einbettung (abgemindert): E-Modul Einbettung unter Last: Reduktionsfaktor für das Kriechen: Verdichtungsgrad aus Tabelle 8: Abminderungsfaktor E20 (Grundwasser): Abminderungsfaktor E20 (enger Graben): Bei einem Verhältnis (Breite Graben/Außendurchmesser) >= 4, ergibt die Foten im Verhältnis (Breite Graben/Außendurchmesser) >= 4, ergibt die Foten im Verhältnis (Breite Graben/Außendurchmesser) >= 4, ergibt die Foten im Verhältnis (Breite Graben/Bettungssteifigkeit: Korrekturfaktor für die horizontale Bettungssteifigkeit: Bei geböschten Gräben ist hier anstelle der Grabenbreite in Scheitelhöhe di Horizontale Bettungssteifigkeit: Vertikale Bettungssteifigkeit: Vertikale Bettungssteifigkeit:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 14,88<br>54,68                                                               | 15,25<br>53,01<br>0,00<br>κ<br>κ<br>κο<br>hw,scheitel<br>γ'<br>PErd<br>PE<br>PV<br>φ                                 | 1,000<br>1,000<br>1,000<br>1,65<br>11,00<br>18,15<br>18,15<br>34,39    | kN/m²<br>kN/m²<br>kN/m²                                           |
| 1.2.3.1 Silotheorie  Erdlastbeiwert κ für Grabenlast (Silotheorie):  Erdlastbeiwert κ0 für Flächenlast (Silotheorie):  1.2.3.2 Belastung  Grundwasserstand über Scheitel: Wichte Verfüllung unter Wasser: Vertikale Bodenspannung aufgrund Erdlast: Vertikale Bodenspannung aufgrund Erd- und Flächenlast: Spannung aufgrund Verkehrslast: Enthaltener Stoßfaktor:  1.2.3.3 Boden-Verformungsmoduln EB  E-Modul Verfüllung unter Last: E-Modul Sinbettung (abgemindert): E-Modul Einbettung unter Last: Reduktionsfaktor für das Kriechen: Verdichtungsgrad aus Tabelle 8: Abminderungsfaktor E20 (Grundwasser): Abminderungsfaktor E20 (enger Graben):  Bei einem Verhältnis (Breite Graben/Außendurchmesser) >= 4, ergibt die Foten E-Modul Einbettung (abgemindert): E-Modul Einbettung (abgemindert): E-Modul Boden unter dem Rohr:  1.2.3.4 Bodensteifigkeiten  Hilfswert für horizontale Bettungssteifigkeit: Korrekturfaktor für die horizontale Bettungssteifigkeit: Korrekturfaktor für die horizontale Bettungssteifigkeit: Vertikale Bettungssteifigkeit: Vertikale Bettungssteifigkeit:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                              | k0<br>hw,scheitel<br>γ'<br>PErd<br>PE<br>P∨<br>φ                                                                     | 1,000<br>1,65<br>11,00<br>18,15<br>18,15<br>34,39                      | m<br>kN/m³<br>kN/m²<br>kN/m²<br>kN/m²                             |
| Erdlastbeiwert x für Grabenlast (Silotheorie): Erdlastbeiwert x0 für Flächenlast (Silotheorie):  1.2.3.2 Belastung Grundwasserstand über Scheitel: Wichte Verfüllung unter Wasser: Vertikale Bodenspannung aufgrund Erdlast: Vertikale Bodenspannung aufgrund Erd- und Flächenlast: Spannung aufgrund Verkehrslast: Enthaltener Stoßfaktor:  1.2.3.3 Boden-Verformungsmoduln EB E-Modul Verfüllung unter Last: E-Modul anstehender Boden: E-Modul Einbettung (abgemindert): E-Modul Einbettung unter Last: Reduktionsfaktor für das Kriechen: Verdichtungsgrad aus Tabelle 8: Abminderungsfaktor E20 (Grundwasser): Abminderungsfaktor E20 (enger Graben): Bei einem Verhältnis (Breite Graben/Außendurchmesser) >= 4, ergibt die Foten Fermannen von den kohr:  1.2.3.4 Bodensteifigkeiten  Hilfswert für horizontale Bettungssteifigkeit: Korrekturfaktor für die horizontale Bettungssteifigkeit: Bei geböschten Gräben ist hier anstelle der Grabenbreite in Scheitelhöhe di Horizontale Bettungssteifigkeit: Vertikale Bettungssteifigkeit:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                              | k0<br>hw,scheitel<br>γ'<br>PErd<br>PE<br>P∨<br>φ                                                                     | 1,000<br>1,65<br>11,00<br>18,15<br>18,15<br>34,39                      | m<br>kN/m³<br>kN/m²<br>kN/m²<br>kN/m²                             |
| Erdlastbeiwert k0 für Flächenlast (Silotheorie):  1.2.3.2 Belastung  Grundwasserstand über Scheitel: Wichte Verfüllung unter Wasser: Vertikale Bodenspannung aufgrund Erdlast: Vertikale Bodenspannung aufgrund Erd- und Flächenlast: Spannung aufgrund Verkehrslast: Enthaltener Stoßfaktor:  1.2.3.3 Boden-Verformungsmoduln EB  E-Modul Verfüllung unter Last: E-Modul anstehender Boden: E-Modul Einbettung (abgemindert): E-Modul Einbettung unter Last: Reduktionsfaktor für das Kriechen: Verdichtungsgrad aus Tabelle 8: Abminderungsfaktor E20 (Grundwasser): Abminderungsfaktor E20 (enger Graben): Bei einem Verhältnis (Breite Graben/Außendurchmesser) >= 4, ergibt die Foten Fellower verhältnis (Breite Graben):  E-Modul Einbettung (abgemindert): E-Modul Boden unter dem Rohr:  1.2.3.4 Bodensteifigkeiten  Hilfswert für horizontale Bettungssteifigkeit: Korrekturfaktor für die horizontale Bettungssteifigkeit: Bei geböschten Gräben ist hier anstelle der Grabenbreite in Scheitelhöhe di Horizontale Bettungssteifigkeit: Vertikale Bettungssteifigkeit:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                              | k0<br>hw,scheitel<br>γ'<br>PErd<br>PE<br>P∨<br>φ                                                                     | 1,000<br>1,65<br>11,00<br>18,15<br>18,15<br>34,39                      | m<br>kN/m³<br>kN/m²<br>kN/m²<br>kN/m²                             |
| Grundwasserstand über Scheitel: Wichte Verfüllung unter Wasser: Vertikale Bodenspannung aufgrund Erd- und Flächenlast: Spannung aufgrund Verkehrslast: Enthaltener Stoßfaktor:  1.2.3.3 Boden-Verformungsmoduln EB E-Modul Verfüllung unter Last: E-Modul anstehender Boden: E-Modul Einbettung (abgemindert): E-Modul Einbettung unter Last: Reduktionsfaktor für das Kriechen: Verdichtungsgrad aus Tabelle 8: Abminderungsfaktor E20 (Grundwasser): Abminderungsfaktor E20 (enger Graben): Bei einem Verhältnis (Breite Graben/Außendurchmesser) >= 4, ergibt die Follower bei einem Verhältnis (Breite Graben/Außendurchmesser) >= 4, ergibt die Follower bei einem Verhältnis (Breite Graben/Außendurchmesser) >= 4, ergibt die Follower bei einem Verhältnis (Breite Graben/Außendurchmesser) >= 4, ergibt die Follower bei einem Verhältnis (Breite Graben/Außendurchmesser) >= 4, ergibt die Follower bei einem Verhältnis (Breite Graben/Außendurchmesser) >= 4, ergibt die Follower bei einem Verhältnis (Breite Graben/Außendurchmesser) >= 4, ergibt die Follower bei einem Verhältnis (Breite Graben/Außendurchmesser) >= 4, ergibt die Follower bei einem Verhältnis (Breite Graben/Außendurchmesser) >= 4, ergibt die Follower bei einem Verhältnis (Breite Graben/Außendurchmesser) >= 4, ergibt die Follower bei einem Verhältnis (Breite Graben/Außendurchmesser) >= 4, ergibt die Follower bei einem Verhältnis (Breite Graben/Außendurchmesser) >= 4, ergibt die Follower bei einem Verhältnis (Breite Graben/Außendurchmesser) >= 4, ergibt die Follower bei einem Verhältnis (Breite Graben/Außendurchmesser) >= 4, ergibt die Follower bei einem Verhältnis (Breite Graben/Außendurchmesser) >= 4, ergibt die Follower bei einem Verhältnis (Breite Graben/Außendurchmesser) >= 4, ergibt die Follower bei einem Verhältnis (Breite Graben/Außendurchmesser) >= 4, ergibt die Follower bei einem Verhältnis (Breite Graben/Außendurchmesser) >= 4, ergibt die Follower bei einem Verhältnis (Breite Graben/Breite) >= 4, ergibt die Follower bei einem Verhältnis (Breite Graben/Breite) >= 4, ergibt d |                                                                              | Y'<br>PErd<br>PE<br>PV<br>φ                                                                                          | 11,00<br>18,15<br>18,15<br>34,39                                       | kN/m³<br>kN/m²<br>kN/m²<br>kN/m²                                  |
| Wichte Verfüllung unter Wasser: Vertikale Bodenspannung aufgrund Erdlast: Vertikale Bodenspannung aufgrund Erd- und Flächenlast: Spannung aufgrund Verkehrslast: Enthaltener Stoßfaktor:  1.2.3.3 Boden-Verformungsmoduln EB  E-Modul Verfüllung unter Last: E-Modul anstehender Boden: E-Modul Einbettung (abgemindert): E-Modul Einbettung unter Last: Reduktionsfaktor für das Kriechen: Verdichtungsgrad aus Tabelle 8: Abminderungsfaktor E20 (Grundwasser): Abminderungsfaktor E20 (enger Graben):  Bei einem Verhältnis (Breite Graben/Außendurchmesser) >= 4, ergibt die Follower bei einem Verhältnis (Breite Graben):  1.2.3.4 Bodensteifigkeiten  Hilfswert für horizontale Bettungssteifigkeit: Korrekturfaktor für die horizontale Bettungssteifigkeit: Bei geböschten Gräben ist hier anstelle der Grabenbreite in Scheitelhöhe di Horizontale Bettungssteifigkeit: Vertikale Bettungssteifigkeit:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                              | Y'<br>PErd<br>PE<br>PV<br>φ                                                                                          | 11,00<br>18,15<br>18,15<br>34,39                                       | kN/m³<br>kN/m²<br>kN/m²<br>kN/m²                                  |
| E-Modul Verfüllung unter Last: E-Modul anstehender Boden: E-Modul Einbettung (abgemindert): E-Modul Einbettung unter Last: Reduktionsfaktor für das Kriechen: Verdichtungsgrad aus Tabelle 8: Abminderungsfaktor E20 (Grundwasser): Abminderungsfaktor E20 (enger Graben): Bei einem Verhältnis (Breite Graben/Außendurchmesser) >= 4, ergibt die Follower bei einem Verhältnis (abgemindert): E-Modul Einbettung (abgemindert): E-Modul Boden unter dem Rohr:  1.2.3.4 Bodensteifigkeiten Hilfswert für horizontale Bettungssteifigkeit: Korrekturfaktor für die horizontale Bettungssteifigkeit: Bei geböschten Gräben ist hier anstelle der Grabenbreite in Scheitelhöhe di Horizontale Bettungssteifigkeit: Vertikale Bettungssteifigkeit:  1.2.3.5 Auflagerwinkel, wirksame Ausladung und Reibungswerten.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                              | ,                                                                                                                    |                                                                        |                                                                   |
| E-Modul anstehender Boden: E-Modul Einbettung (abgemindert): E-Modul Einbettung unter Last: Reduktionsfaktor für das Kriechen: Verdichtungsgrad aus Tabelle 8: Abminderungsfaktor E20 (Grundwasser): Abminderungsfaktor E20 (enger Graben): Bei einem Verhältnis (Breite Graben/Außendurchmesser) >= 4, ergibt die Folgen einem Verhältnis (abgemindert): E-Modul Einbettung (abgemindert): E-Modul Boden unter dem Rohr:  1.2.3.4 Bodensteifigkeiten  Hilfswert für horizontale Bettungssteifigkeit: Korrekturfaktor für die horizontale Bettungssteifigkeit: Bei geböschten Gräben ist hier anstelle der Grabenbreite in Scheitelhöhe die Horizontale Bettungssteifigkeit: Vertikale Bettungssteifigkeit:  1.2.3.5 Auflagerwinkel, wirksame Ausladung und Reibungsweiten der Grabenbreite in Scheitelnessen.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                              | ,                                                                                                                    |                                                                        |                                                                   |
| E-Modul Einbettung (abgemindert): E-Modul Boden unter dem Rohr:  1.2.3.4 Bodensteifigkeiten  Hilfswert für horizontale Bettungssteifigkeit: Korrekturfaktor für die horizontale Bettungssteifigkeit: Bei geböschten Gräben ist hier anstelle der Grabenbreite in Scheitelhöhe di Horizontale Bettungssteifigkeit: Vertikale Bettungssteifigkeit:  1.2.3.5 Auflagerwinkel, wirksame Ausladung und Reibungsweiten.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                              | $\begin{array}{l} E_{3,\sigma} \\ E_{2,\sigma} \\ E_{20,\sigma} \\ f_1 \\ D_{pr,E20} \\ f_2 \\ \alpha_B \end{array}$ | 16,00<br>25,00<br>16,00<br>16,00<br>1,000<br>0,95<br>1,000<br>1,000    | N/mm²<br>N/mm²<br>N/mm²<br>N/mm²<br>[-]<br>[-]<br>[-]             |
| E-Modul Boden unter dem Rohr:  1.2.3.4 Bodensteifigkeiten  Hilfswert für horizontale Bettungssteifigkeit: Korrekturfaktor für die horizontale Bettungssteifigkeit: Bei geböschten Gräben ist hier anstelle der Grabenbreite in Scheitelhöhe di Horizontale Bettungssteifigkeit: Vertikale Bettungssteifigkeit:  1.2.3.5 Auflagerwinkel, wirksame Ausladung und Reibungsweiten wirksame Ausladung und Reibungsweiten der Rohren von der Roh | rmel 6.03 immer de                                                           | en Wert 1,0.                                                                                                         |                                                                        |                                                                   |
| Hilfswert für horizontale Bettungssteifigkeit: Korrekturfaktor für die horizontale Bettungssteifigkeit: Bei geböschten Gräben ist hier anstelle der Grabenbreite in Scheitelhöhe di Horizontale Bettungssteifigkeit: Vertikale Bettungssteifigkeit:  1.2.3.5 Auflagerwinkel, wirksame Ausladung und Reibungsweiten wirksame Ausladung und Reibungsweiten die Korrektungssteifigkeit:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                              | E <sub>2,σ</sub><br>E <sub>4,σ</sub>                                                                                 | 16,00<br>160,00                                                        | N/mm²<br>N/mm²                                                    |
| Korrekturfaktor für die horizontale Bettungssteifigkeit: Bei geböschten Gräben ist hier anstelle der Grabenbreite in Scheitelhöhe di Horizontale Bettungssteifigkeit: Vertikale Bettungssteifigkeit:  1.2.3.5 Auflagerwinkel, wirksame Ausladung und Reibungsweiten wirksame Ausladung und Reibungsweiten der Grabenbreite in Scheitelhöhe di Horizontale Bettungssteifigkeit:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                              |                                                                                                                      |                                                                        |                                                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | e Grabenbreite in K                                                          | $\Delta_{ m f}$ $\zeta$<br>(ämpferhöhe einzuste<br>SBh<br>SBv                                                        | 1,667<br>1,000<br>tzen.<br>9,600<br>10,419                             | [-]<br>[-]<br>N/mm²<br>N/mm²                                      |
| Auflagerwinkel:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                              |                                                                                                                      |                                                                        |                                                                   |
| Höhe Auflager von Auflagerwinkel bis UK Rohr: Höhe untere Bettungsschickt UK Rohr bis Grabensohle: Berechnete Ausladung: Wirksame Ausladung: Innerer Reibungswinkel: Wandreibungswinkel:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | nkel                                                                         | 2α<br>t <sub>r</sub>                                                                                                 | 180<br>0,140<br>0.150                                                  | 。<br>m<br>m<br>[-]                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <u>nkel</u>                                                                  | h <sub>su</sub><br>a<br>a'<br>φ'<br>δ                                                                                | 0,150<br>1,54<br>1,536<br>30,000<br>20,000                             | [-]                                                               |

| 1.2.3.6 Rohrwerkstoffkennwerte und Ringsteifi                                                                                                                                        | gkeit                                                      |                                               |                                               |                                |                                  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------|-----------------------------------------------|-----------------------------------------------|--------------------------------|----------------------------------|
| Elastizitätsmodul in Ringrichtung<br>Radiale Biegezugfestigkeit<br>Radiale Biegedruckfestigkeit                                                                                      | ER,rad<br>f <sub>t,fl</sub><br>f <sub>c,rad</sub>          | 800,0<br>21,0<br>21,0                         | 578,9<br>18,6<br>18,6                         | 160,0<br>14,0<br>14,0          | N/mm²<br>N/mm²<br>N/mm²          |
| Rohrsteifigkeit                                                                                                                                                                      | S <sub>R</sub>                                             | 67.722                                        | 49.006                                        | 13.544                         | N/m²                             |
| 1.2.3.7 Steifigkeitsverhältnisse                                                                                                                                                     |                                                            |                                               |                                               |                                |                                  |
| Systemsteifigkeit, gewichtet<br>Steifigkeitsverhältnis<br>Beiwert für die vertikale Verformung                                                                                       | V <sub>RB,w</sub><br>V <sub>S</sub><br>c <sub>v</sub> *    | 0,0071<br>0,5590<br>-0,012                    | 0,0051<br>0,4875<br>-0,010                    | 0,0014<br>                     | [-]<br>[-]<br>[-]                |
| <u>1.2.3.8 Beiwerte</u>                                                                                                                                                              |                                                            |                                               |                                               |                                |                                  |
| Erdruckbeiwert (Einbettung) Beiwert für den Bettungsreaktionsdruck Resultierender Verformungsbeiwert Resultierender Verformungsbeiwert Beiwert für die vertikale Verformung          | K <sub>2</sub><br>K*<br>c'h<br>c'h,qh*<br>c <sub>v</sub> * | 0,400<br>1,135<br>0,0839<br>-0,0669<br>-0,012 | 0,400<br>1,165<br>0,0839<br>-0,0669<br>-0,010 | <br><br>                       | [-]<br>[-]<br>[-]<br>[-]         |
| 1.2.3.9 Konzentrationsfaktoren λR und λB                                                                                                                                             |                                                            |                                               |                                               |                                |                                  |
| Maximaler Konzentrationsfaktor<br>Beiwert für maximalen Konzentrationsfaktor<br>Konzentrationsfaktor über Rohr, Startwert<br>Konzentrationsfaktor über Rohr, unter<br>Grabeneinfluss | max λ<br>K'<br>λR<br>λ <sub>RG</sub>                       | 2,059<br>0,839<br>0,874<br>0,874              | 2,059<br>0,804<br>0,819<br>0,819              | <br><br>                       | [-]<br>[-]<br>[-]                |
| Konzentrationsfaktor über Rohr, oberer                                                                                                                                               | $\lambda_{fo}$                                             | 3,753                                         | 3,753                                         |                                | [-]                              |
| Grenzwert<br>Konzentrationsfaktor über Rohr, unterer<br>Grenzwert                                                                                                                    | $\lambda_{fu}$                                             | 0,284                                         | 0,284                                         |                                | [-]                              |
| Konzentrationsfaktor über Rohr, endgültiger<br>Wert                                                                                                                                  | $\lambda_{RG}$                                             | 0,874                                         | 0,819                                         |                                | [-]                              |
| Konzentrationsfaktor Boden                                                                                                                                                           | λΒ                                                         | 1,042                                         | 1,060                                         |                                | [-]                              |
| 1.2.3.10 Druckverteilung am Rohrumfang                                                                                                                                               |                                                            |                                               |                                               |                                |                                  |
|                                                                                                                                                                                      |                                                            | Kurzzeit<br>alle Lasten                       | Langzeit<br>Erdlasten<br>Verkehrslast         | Langzeit<br>sonstige<br>Lasten |                                  |
| Vertikale Gesamtlast<br>Seitendruck<br>Bettungsreaktionsdruck (Erdlasten)<br>Bettungsreaktionsdruck (Wasserfüllung)                                                                  | qv<br>qh<br>q*h<br>q*hw                                    | 50,24<br>8,18<br>47,63<br>0,00                | 49,25<br>8,31<br>47,61<br>0,00                | <br><br>                       | kN/m²<br>kN/m²<br>kN/m²<br>kN/m² |
| 1.2.4 Schnittkräfte                                                                                                                                                                  |                                                            |                                               |                                               |                                |                                  |
| 1.2.4.1 Schnittkräfte bei minimalem Grundwas                                                                                                                                         | ser, Kurzzeit                                              |                                               |                                               |                                |                                  |
| Rerounding-Faktor (Abminderung Momente):                                                                                                                                             |                                                            | 0-111                                         | r                                             | 1,000                          | [-]                              |
| Mittlerer Radius                                                                                                                                                                     | rm                                                         | Scheitel<br>133,30                            | Kämpfer<br>133,30                             | Sohle<br>133,30                | mm                               |
| Moment aufgrund vertikaler Gesamtbelastung<br>Moment aufgrund Seitendruck<br>Moment aufgrund horiz.<br>Bettungsreaktionsdruck                                                        | M <sub>qv</sub><br>M <sub>qh</sub><br>M* <sub>qh</sub>     | 0,281<br>-0,066<br>-0,176                     | -0,281<br>0,066<br>0,202                      | 0,281<br>-0,066<br>-0,176      | kNm/m<br>kNm/m<br>kNm/m          |
| Moment aufgrund Eigengewicht<br>Moment aufgrund Wasserfüllung                                                                                                                        | M <sub>g</sub><br>M <sub>w</sub>                           | 0,001<br>0,000                                | -0,001<br>0,000                               | 0,001<br>0,000                 | kNm/m<br>kNm/m                   |
| Moment aufgrund Wasserdung Moment aufgrund Wasserdruck/Innendruck                                                                                                                    | M <sub>pw</sub>                                            | 0,000                                         | 0,000                                         | 0,000                          | kNm/m                            |
| Summe der Momente                                                                                                                                                                    | ΣΜ                                                         | 0,040                                         | -0,014                                        | 0,040                          | kNm/m                            |
|                                                                                                                                                                                      |                                                            |                                               |                                               |                                |                                  |

|                                                             |                   | Scheitel        | Kämpfer         | Sohle           |              |
|-------------------------------------------------------------|-------------------|-----------------|-----------------|-----------------|--------------|
| Mittlerer Radius                                            | r <sub>m</sub>    | 133,30          | 133,30          | 133,30          | mm           |
| Normalkraft aufgrund vertikaler<br>Sesamtbelastung          | $N_{qv}$          | 0,000           | -8,427          | 0,000           | kN/m         |
| Normalkraft aufgrund Seitendruck                            | $N_{qh}$          | -1,983          | 0,000           | -1,983          | kN/m         |
|                                                             | N* <sub>qh</sub>  | -4,205          | 0,000           | -4,205          | kN/m         |
| Bettungsreaktionsdruck<br>Iormalkraft aufgrund Eigengewicht | $N_g$             | 0,003           | -0,026          | -0,003          | kN/m         |
|                                                             | N <sub>w</sub>    | 0,003           | 0,000           | 0,003           | kN/m         |
| Jormalkraft aufgrund WasserdrucklInnendruck                 |                   | 0,000           | 0,000           | 0,000           | kN/m         |
|                                                             | ΣΝ                | -6,186          | -8,453          | -6,191          | kN/m         |
| .2.4.2 Schnittkräfte bei minimalem Grundwasse               | er, Langzeit      |                 |                 |                 |              |
| Rerounding-Faktor (Abminderung Momente):                    |                   |                 | r               | 1,000           | [-]          |
| 3 ( 3 /                                                     |                   | Scheitel        | Kämpfer         | Sohle           |              |
| littlerer Radius                                            | $r_{m}$           | 133,30          | 133,30          | 133,30          | mm           |
| Moment aufgrund vertikaler Gesamtbelastung                  | $M_{qv}$          | 0,268           | -0,268          | 0,268           | kNm/m        |
| Noment aufgrund Seitendruck                                 | Mqh               | -0,068          | 0,068           | -0,068          | kNm/m        |
|                                                             | M* <sub>qh</sub>  | -0,170          | 0,196           | -0,170          | kNm/m        |
| Bettungsreaktionsdruck<br>//oment aufgrund Eigengewicht     | M                 | 0,001           | -0,001          | 0,001           | kNm/m        |
|                                                             | $M_g$<br>$M_w$    | 0,000           | 0,000           | 0,001           | kNm/m        |
|                                                             | M <sub>pw</sub>   | 0,000           | 0,000           | 0,000           | kNm/m        |
|                                                             | ΣΜ                | 0,031           | -0,005          | 0,031           | kNm/m        |
| diffille del Montente                                       | ZIVI              | 0,031           | -0,003          | 0,031           | KINIII/III   |
|                                                             |                   | Scheitel        | Kämpfer         | Sohle           |              |
| /littlerer Radius                                           | $r_{m}$           | 133,30          | 133,30          | 133,30          | mm           |
| lormalkraft aufgrund vertikaler                             | $N_{qv}$          | 0,000           | -8,049          | 0,000           | kN/m         |
| Gesamtbelastung                                             |                   | 0,000           | 0,010           | 0,000           |              |
|                                                             | $N_{qh}$          | -2,033          | 0,000           | -2,033          | kN/m         |
|                                                             | N* <sub>qh</sub>  | -4,077          | 0,000           | -4,077          | kN/m         |
| Settungsreaktionsdruck                                      | NI                | 0.003           | 0.026           | 0.003           | kN/m         |
|                                                             | Ng<br>Nw          | 0,003<br>0,000  | -0,026<br>0,000 | -0,003<br>0,000 | kN/m         |
| Normalkraft aufgrund Wasserdrucklinnendruck                 |                   | 0,000           | 0,000           | 0,000           | kN/m         |
|                                                             | ΣΝ                | -6,108          | -8,076          | -6,113          | kN/m         |
|                                                             |                   | 3,.00           | 3,0.0           | 3,              |              |
| I.2.4.3 Schnittkräfte bei maximalem Grundwass               | oci, Muizzell     |                 | _               | 4 000           |              |
| Rerounding-Faktor (Abminderung Momente):                    |                   | Scheitel        | r<br>Kämpfer    | 1,000<br>Sohle  | [-]          |
| ∕littlerer Radius                                           | r <sub>m</sub>    | 133,30          | 133,30          | 5onie<br>133,30 | mm           |
|                                                             | Mgv               | 0,223           | -0,223          | 0,223           | kNm/m        |
|                                                             | M <sub>qh</sub>   | -0,036          | 0,036           | -0,036          | kNm/m        |
|                                                             | M* <sub>qh</sub>  | -0,153          | 0,176           | -0,153          | kNm/m        |
| Bettungsreaktionsdruck                                      | di.               |                 |                 | -, -,           |              |
|                                                             | $M_g$             | 0,001           | -0,001          | 0,001           | kNm/m        |
|                                                             | Mw                | 0,000           | 0,000           | 0,000           | kNm/m        |
| Moment aufgrund Wasserdruck/Innendruck                      | M <sub>pw</sub>   | 0,000           | 0,000           | 0,000           | kNm/m        |
| Summe der Momente                                           | ΣΜ                | 0,034           | -0,012          | 0,034           | kNm/m        |
|                                                             |                   | Scheitel        | Kämpfer         | Sohle           |              |
| Aittlewen Dedice                                            | rm                | 133,30          | 133,30          | 133,30          | mm           |
| viittierer Radius                                           |                   |                 |                 |                 |              |
|                                                             | Nav               | 0.000           | -6.697          | 0.000           | kN/m         |
| Normalkraft aufgrund vertikaler<br>Gesamtbelastung          | $N_{qv}$ $N_{qh}$ | 0,000<br>-1,091 | -6,697<br>0,000 | 0,000<br>-1,091 | kN/m<br>kN/m |

| Normalkraft aufgrund horiz.<br>Bettungsreaktionsdruck                                                                                                       | N* <sub>qh</sub>       | -3,663   | 0,000                                        | -3,663       | kN/m       |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|----------|----------------------------------------------|--------------|------------|
| Normalkraft aufgrund Eigengewicht                                                                                                                           | Ng                     | 0,003    | -0,026                                       | -0,003       | kN/m       |
| Normalkraft aufgrund Wasserfüllung                                                                                                                          | $N_W$                  | 0,000    | 0,000                                        | 0,000        | kN/m       |
| Normalkraft aufgrund Wasserdruck Innendruck                                                                                                                 | ( N <sub>pw</sub>      | -2,730   | -2,730                                       | -2,730       | kN/m       |
| Summe der Normalkräfte                                                                                                                                      | ΣΝ                     | -7,481   | -9,454                                       | -7,487       | kN/m       |
| 1.2.4.4 Schnittkräfte bei maximalem Grundwas                                                                                                                | sser, Langzeit         |          |                                              |              |            |
| Rerounding-Faktor (Abminderung Momente):                                                                                                                    |                        |          | r                                            | 1,000        | [-]        |
|                                                                                                                                                             |                        | Scheitel | Kämpfer                                      | Sohle        |            |
| Mittlerer Radius                                                                                                                                            | r <sub>m</sub>         | 133,30   | 133,30                                       | 133,30       | mm         |
| Moment aufgrund vertikaler Gesamtbelastung                                                                                                                  | $M_{qv}$               | 0,219    | -0,219                                       | 0,219        | kNm/m      |
| Moment aufgrund Seitendruck                                                                                                                                 | Mgh                    | -0,037   | 0,037                                        | -0,037       | kNm/m      |
| Moment aufgrund horiz.                                                                                                                                      | M* <sub>qh</sub>       | -0,153   | 0,176                                        | -0,153       | kNm/m      |
| Bettungsreaktionsdruck                                                                                                                                      | ·                      |          |                                              |              |            |
| Moment aufgrund Eigengewicht                                                                                                                                | Mg                     | 0,001    | -0,001                                       | 0,001        | kNm/m      |
| Moment aufgrund Wasserfüllung                                                                                                                               | $M_W$                  | 0,000    | 0,000                                        | 0,000        | kNm/m      |
| Moment aufgrund Wasserdruck/Innendruck                                                                                                                      | $M_{pw}$               | 0,000    | 0,000                                        | 0,000        | kNm/m      |
| Summe der Momente                                                                                                                                           | ΣΜ                     | 0,029    | -0,007                                       | 0,029        | kNm/m      |
|                                                                                                                                                             |                        |          | 1611                                         |              |            |
| APOL D. P.                                                                                                                                                  |                        | Scheitel | Kämpfer                                      | Sohle        |            |
| Mittlerer Radius                                                                                                                                            | r <sub>m</sub>         | 133,30   | 133,30                                       | 133,30       | mm         |
| Normalkraft aufgrund vertikaler<br>Gesamtbelastung                                                                                                          | $N_{qv}$               | 0,000    | -6,565                                       | 0,000        | kN/m       |
| Normalkraft aufgrund Seitendruck                                                                                                                            | $N_{qh}$               | -1,108   | 0,000                                        | -1,108       | kN/m       |
| Normalkraft aufgrund horiz.                                                                                                                                 | N* <sup>i</sup> qh     | -3,662   | 0,000                                        | -3,662       | kN/m       |
| Bettungsreaktionsdruck                                                                                                                                      |                        |          |                                              |              |            |
| Normalkraft aufgrund Eigengewicht                                                                                                                           | Ng                     | 0,003    | -0,026                                       | -0,003       | kN/m       |
| Normalkraft aufgrund Wasserfüllung                                                                                                                          | Nw                     | 0,000    | 0,000                                        | 0,000        | kN/m       |
| Normalkraft aufgrund Wasserdruck Innendruck                                                                                                                 | ( N <sub>pw</sub>      | -2,730   | -2,730                                       | -2,730       | kN/m       |
| Summe der Normalkräfte                                                                                                                                      | ΣΝ                     | -7,497   | -9,322                                       | -7,503       | kN/m       |
| 1.2.5 Nachweise Kurzzeit                                                                                                                                    |                        |          |                                              |              |            |
| 1.2.5.1 Spannungsnachweis (bei minimalem C                                                                                                                  | Grundwasser)           |          |                                              |              |            |
|                                                                                                                                                             |                        |          |                                              |              |            |
| $\sigma_{R,res} = \frac{ \sigma_{qv,qh,qh^*}  \cdot \overline{\sigma}_{R} +  \sigma_{sonst}  \cdot \sigma_{R,L}}{ \sigma_{qv,qh,qh^*}  +  \sigma_{sonst} }$ |                        |          |                                              |              | (9.01c)    |
| Erforderlicher Sicherheitsbeiwert, Biegezugspa<br>Erforderlicher Sicherheitsbeiwert, Biegedrucks                                                            |                        |          | erf γ <sub>RBZ</sub><br>erf γ <sub>RBD</sub> | 2,50<br>2,50 | [-]<br>[-] |
| Anzusetzende Biegezugfestigkeit                                                                                                                             | f <sub>t,fl,res</sub>  | 21,00    | 21,00                                        | 21,00        | N/mm²      |
| Anzusetzende Biegedruckfestigkeit                                                                                                                           | f <sub>c,rad,res</sub> | 21,00    | 21,00                                        | 21,00        | N/mm²      |
| innon                                                                                                                                                       | , ,                    | -        | •                                            | •            |            |

| Erforderlicher Sicherheitsbeiwert, Biegedruck                                                                                   | spannungen:                                                  |                                               | erf γ <sub>RBD</sub>                  | 2,50                                       | [-]                     |
|---------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|-----------------------------------------------|---------------------------------------|--------------------------------------------|-------------------------|
| Anzusetzende Biegezugfestigkeit<br>Anzusetzende Biegedruckfestigkeit                                                            | $\begin{array}{c} f_{t,fl,res} \\ f_{c,rad,res} \end{array}$ | 21,00<br>21,00                                | 21,00<br>21,00                        | 21,00<br>21,00                             | N/mm²<br>N/mm²          |
| innen                                                                                                                           |                                                              |                                               |                                       |                                            |                         |
| Korrekturfaktor Krümmung innen:                                                                                                 |                                                              |                                               | $\alpha_{ki}$                         | 1,034                                      | [-]                     |
| Spannung aufgrund Erd- u. Verkehrslasten<br>Spannung aufgrund anderer Lasten<br>Spannung gesamt<br>Sicherheitsbeiwert Biegezug: | σ <sub>qv,qh,qh*</sub><br>σ <sub>sonst</sub><br>σ            | Scheitel<br>0,881<br>0,027<br>0,908<br>23,126 | Kämpfer<br>-1,066<br>-0,032<br>-1,098 | Sohle<br>0,881<br>0,034<br>0,915<br>22,949 | N/mm²<br>N/mm²<br>N/mm² |
| Sicherheitsbeiwert Biegedruck:                                                                                                  | γBD                                                          |                                               | 19,120                                |                                            | [-]                     |
| außen                                                                                                                           |                                                              |                                               |                                       |                                            |                         |

Korrekturfaktor Krümmung außen:

0,966 [-]

 $\alpha_{\text{ka}}$ 

| Spannung aufgrund Erd- u. Verkehrslasten<br>Spannung aufgrund anderer Lasten<br>Spannung gesamt                                                           | σqv,qh,qh*<br>σsonst<br>σ                              | Scheitel<br>-1,718<br>-0,025<br>-1,742 | Kämpfer<br>-0,220<br>0,026<br>-0,194  | Sohle<br>-1,718<br>-0,032<br>-1,750 | N/mm²<br>N/mm²<br>N/mm² |  |  |  |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|----------------------------------------|---------------------------------------|-------------------------------------|-------------------------|--|--|--|--|
| Sicherheitsbeiwert Biegezug:<br>Sicherheitsbeiwert Biegedruck:                                                                                            | YBZ<br>YBD                                             | <br>12,052                             | <br>108,434                           | <br>12,001                          | [-]<br>[-]              |  |  |  |  |
| Alle errechneten Sicherheitsbeiwerte des Sp                                                                                                               | annungsnachwe                                          | eises sind ausre                       | eichend.                              |                                     |                         |  |  |  |  |
| 1.2.5.2 Spannungsnachweis (bei maximalem                                                                                                                  | 1.2.5.2 Spannungsnachweis (bei maximalem Grundwasser)  |                                        |                                       |                                     |                         |  |  |  |  |
| $\sigma_{R,res} = \frac{ \sigma_{qv,qh,qh^*}  \cdot \overline{\sigma}_R +  \sigma_{sonst}  \cdot \sigma_{R,L}}{ \sigma_{qv,qh,qh^*}  +  \sigma_{sonst} }$ |                                                        |                                        |                                       |                                     | (9.01c)                 |  |  |  |  |
| Erforderlicher Sicherheitsbeiwert, Biegezugspreforderlicher Sicherheitsbeiwert, Biegedruck                                                                |                                                        |                                        | erf $\gamma_{RBZ}$ erf $\gamma_{RBD}$ | 2,50<br>2,50                        | [-]<br>[-]              |  |  |  |  |
| Anzusetzende Biegezugfestigkeit<br>Anzusetzende Biegedruckfestigkeit                                                                                      | f <sub>t,fl,res</sub><br>f <sub>c,rad,res</sub>        | 21,00<br>21,00                         | 21,00<br>21,00                        | 21,00<br>21,00                      | N/mm²<br>N/mm²          |  |  |  |  |
| innen                                                                                                                                                     |                                                        |                                        |                                       |                                     |                         |  |  |  |  |
| Korrekturfaktor Krümmung innen:                                                                                                                           |                                                        |                                        | αki                                   | 1,034                               | [-]                     |  |  |  |  |
| Spannung aufgrund Erd- u. Verkehrslasten<br>Spannung aufgrund anderer Lasten<br>Spannung gesamt                                                           | σqv,qh,qh*<br>σsonst<br>σ                              | Scheitel<br>0,808<br>-0,187<br>0,621   | Kämpfer<br>-0,873<br>-0,246<br>-1,119 | Sohle<br>0,808<br>-0,180<br>0,628   | N/mm²<br>N/mm²<br>N/mm² |  |  |  |  |
| Sicherheitsbeiwert Biegezug:<br>Sicherheitsbeiwert Biegedruck:                                                                                            | YBZ<br>YBD                                             | 33,831<br>                             | <br>18,763                            | 33,454<br>                          | [-]<br>[-]              |  |  |  |  |
| außen                                                                                                                                                     |                                                        |                                        |                                       |                                     |                         |  |  |  |  |
| Korrekturfaktor Krümmung außen:                                                                                                                           |                                                        |                                        | α <sub>ka</sub>                       | 0,966                               | [-]                     |  |  |  |  |
| Spannung aufgrund Erd- u. Verkehrslasten<br>Spannung aufgrund anderer Lasten<br>Spannung gesamt                                                           | σ <sub>qv,qh,qh</sub> *<br>σ <sub>sonst</sub><br>σ     | Scheitel<br>-1,442<br>-0,219<br>-1,661 | Kämpfer<br>-0,151<br>-0,168<br>-0,319 | Sohle<br>-1,442<br>-0,226<br>-1,668 | N/mm²<br>N/mm²<br>N/mm² |  |  |  |  |
| Sicherheitsbeiwert Biegezug:<br>Sicherheitsbeiwert Biegedruck:                                                                                            | γBZ<br>γBD                                             | <br>12,644                             | <br>65,904                            | <br>12,588                          | [-]<br>[-]              |  |  |  |  |
| Alle errechneten Sicherheitsbeiwerte des Sp                                                                                                               | annungsnachwe                                          | eises sind ausre                       | eichend.                              |                                     |                         |  |  |  |  |
| 1.2.5.3 Verformungsnachweis (bei minimaler                                                                                                                | m Grundwasser                                          | )                                      |                                       |                                     |                         |  |  |  |  |
| Rechenmodus:<br>Verhältnis:<br>Verhältnis 'I/(A·rm²)·κ~Q':                                                                                                |                                                        |                                        | linear<br>I/(A·rm²)<br>I/(A·rm²)·kQ   | 0,00084<br>0,0010                   |                         |  |  |  |  |
| Verformungsbeiwert für Biegemomente<br>Verformungsbeiwert für Normalkräfte<br>Verformungsbeiwert für Querkräfte                                           | c <sub>V</sub><br>c <sup>N</sup> v<br>c <sup>Q</sup> v | qv<br>-0,0833<br>-0,6480<br>-0,3350    | qh<br>0,0833<br>-0,6810<br>0,3350     | qh*<br>0,0640<br>-0,2470<br>0,2430  | [-]<br>[-]<br>[-]       |  |  |  |  |
| Resultierender Verformungsbeiwert<br>Resultierender Verformungsbeiwert                                                                                    | C' <sub>V</sub><br>C'h                                 | -0,0848<br>0,0839                      | 0,0837<br>-0,0848                     | 0,0645<br>-0,0669                   | [-]<br>[-]              |  |  |  |  |
| Vertikale Durchmesseränderung:<br>Horizontale Durchmesseränderung:                                                                                        |                                                        |                                        | $\Delta d_V \ \Delta d_h$             | 2,32<br>1,52                        | mm<br>mm                |  |  |  |  |

 $\delta_{V,B}$ 

 $\delta_{V,A}$ 

 $\delta_{v,\text{Ges}}$ 

Relative vertikale Verformung (aus Belastung, elastisch, Typ B): Vorverformung (z. B. aus Fertigung, plastisch, Typ A): Vertikale Gesamtverformung (Typ A + Typ B):

%

% %

0,87

1,00

1,87

| Zulässige Verformung:                                                                                                                                                     |                                                     |                               | zul $\delta_{\text{V}}$                                                       |     | 6,00                        | %                 |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------|-------------------------------|-------------------------------------------------------------------------------|-----|-----------------------------|-------------------|--|
| Die errechnete Verformung ist kleiner als die                                                                                                                             | zulässige Verform                                   | ung.                          |                                                                               |     |                             |                   |  |
| 1.2.5.4 Verformungsnachweis (bei maximalem Grundwasser)                                                                                                                   |                                                     |                               |                                                                               |     |                             |                   |  |
| Rechenmodus:<br>Verhältnis:<br>Verhältnis 'I/(A·rm²)·κ~Q':                                                                                                                |                                                     |                               | linear<br>I/(A·rm²)<br>I/(A·rm²)⋅κ <sub>Q</sub>                               |     | 0,00084<br>0,00101          |                   |  |
| Verformungsbeiwert für Biegemomente<br>Verformungsbeiwert für Normalkräfte<br>Verformungsbeiwert für Querkräfte                                                           | $\begin{matrix} c_v \\ c^N_v \\ c^Q_v \end{matrix}$ | -0,0833<br>-0,6480<br>-0,3350 | qh<br>0,0833<br>-0,6810<br>0,3350                                             | qh* | 0,0640<br>-0,2470<br>0,2430 | [-]<br>[-]<br>[-] |  |
| Resultierender Verformungsbeiwert Resultierender Verformungsbeiwert                                                                                                       | c' <sub>v</sub><br>c' <sub>h</sub>                  | -0,0848<br>0,0839             | 0,0837<br>-0,0848                                                             |     | 0,0645<br>-0,0669           | [-]<br>[-]        |  |
| Vertikale Durchmesseränderung:<br>Horizontale Durchmesseränderung:                                                                                                        |                                                     |                               | $\Delta d_V \ \Delta d_h$                                                     |     | 1,99<br>1,32                | mm<br>mm          |  |
| Relative vertikale Verformung (aus Belastung, elastisch, Typ B):<br>Vorverformung (z. B. aus Fertigung, plastisch, Typ A):<br>Vertikale Gesamtverformung (Typ A + Typ B): |                                                     |                               | $\begin{array}{l} \delta_{V,B} \\ \delta_{V,A} \\ \delta_{V,Ges} \end{array}$ |     | 0,74<br>1,00<br>1,74        | %<br>%<br>%       |  |
| Zulässige Verformung:                                                                                                                                                     |                                                     |                               | $zul\;\delta_{v}$                                                             |     | 6,00                        | %                 |  |
| Die errechnete Verformung ist kleiner als die                                                                                                                             | zulässige Verformi                                  | ung.                          |                                                                               |     |                             |                   |  |

# 1.2.6 Nachweise Langzeit

# 1.2.6.1 Spannungsnachweis (bei minimalem Grundwasser)

| $\sigma_{R,res} = \frac{ \sigma_{qv,qh,qh^*}  \cdot \overline{\sigma}_{R} +  \sigma_{sonst}  \cdot \sigma_{R,L}}{ \sigma_{qv,qh,qh^*}  +  \sigma_{sonst} }$ |                                                              |                                        |                                       |                                     | (9.01c)                 |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|----------------------------------------|---------------------------------------|-------------------------------------|-------------------------|--|
| Erforderlicher Sicherheitsbeiwert, Biegezugspannungen: Erforderlicher Sicherheitsbeiwert, Biegedruckspannungen:                                             |                                                              |                                        | erf $\gamma_{RBZ}$ erf $\gamma_{RBD}$ | 2,50<br>2,50                        | [-]<br>[-]              |  |
| Anzusetzende Biegezugfestigkeit<br>Anzusetzende Biegedruckfestigkeit                                                                                        | $\begin{array}{l} f_{t,fl,res} \\ f_{c,rad,res} \end{array}$ | 17,41<br>17,51                         | 17,43<br>17,38                        | 17,37<br>17,49                      | N/mm²<br>N/mm²          |  |
| innen                                                                                                                                                       |                                                              |                                        |                                       |                                     |                         |  |
| Korrekturfaktor Krümmung innen:                                                                                                                             |                                                              |                                        | $\alpha_{ki}$                         | 1,034                               | [-]                     |  |
| Spannung aufgrund Erd- u. Verkehrslasten<br>Spannung aufgrund anderer Lasten<br>Spannung gesamt                                                             | σ <sub>qv,qh,qh*</sub><br>σ <sub>sonst</sub><br>σ            | Scheitel<br>0,580<br>0,027<br>0,607    | Kämpfer<br>-0,758<br>-0,032<br>-0,790 | Sohle<br>0,580<br>0,034<br>0,614    | N/mm²<br>N/mm²<br>N/mm² |  |
| Sicherheitsbeiwert Biegezug:<br>Sicherheitsbeiwert Biegedruck:                                                                                              | γBZ<br>γBD                                                   | 28,711<br>                             | <br>22,047                            | 28,320<br>                          | [-]<br>[-]              |  |
| außen                                                                                                                                                       |                                                              |                                        |                                       |                                     |                         |  |
| Korrekturfaktor Krümmung außen:                                                                                                                             |                                                              |                                        | α <sub>ka</sub>                       | 0,966                               | [-]                     |  |
| Spannung aufgrund Erd- u. Verkehrslasten<br>Spannung aufgrund anderer Lasten<br>Spannung gesamt                                                             | σqv,qh,qh*<br>σsonst<br>σ                                    | Scheitel<br>-1,425<br>-0,025<br>-1,449 | Kämpfer<br>-0,454<br>0,026<br>-0,427  | Sohle<br>-1,425<br>-0,032<br>-1,457 | N/mm²<br>N/mm²<br>N/mm² |  |
| Sicherheitsbeiwert Biegezug:<br>Sicherheitsbeiwert Biegedruck:                                                                                              | YBZ<br>YBD                                                   | 12,083                                 | <br>40,683                            | <br>12,010                          | [-]<br>[-]              |  |
| Alle errechneten Sicherheitsbeiwerte des Spannungsnachweises sind ausreichend.                                                                              |                                                              |                                        |                                       |                                     |                         |  |

### 1.2.6.2 Spannungsnachweis (bei maximalem Grundwasser)

| $\sigma_{\text{R,res}} = \frac{ \sigma_{\text{qv,qh,qh*}}  \cdot \bar{\sigma}_{\text{R}} +  \sigma_{\text{sonst}}  \cdot \sigma_{\text{R,L}}}{ \sigma_{\text{qv,qh,qh*}}  +  \sigma_{\text{sonst}} }$ |                                                        |                                                 |                                                 |                                     | (9.01c)                 |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|-------------------------------------------------|-------------------------------------------------|-------------------------------------|-------------------------|
| Erforderlicher Sicherheitsbeiwert, Biegezugsp<br>Erforderlicher Sicherheitsbeiwert, Biegedruck                                                                                                        |                                                        |                                                 | erf γRBZ<br>erf γRBD                            | 2,50<br>2,50                        | [-]<br>[-]              |
| Anzusetzende Biegezugfestigkeit<br>Anzusetzende Biegedruckfestigkeit                                                                                                                                  | $f_{t,fl,res} \\ f_{c,rad,res}$                        | 17,54<br>17,91                                  | 17,38<br>16,94                                  | 17,57<br>17,89                      | N/mm²<br>N/mm²          |
| innen                                                                                                                                                                                                 |                                                        |                                                 |                                                 |                                     |                         |
| Korrekturfaktor Krümmung innen:                                                                                                                                                                       |                                                        |                                                 | αki                                             | 1,034                               | [-]                     |
| Spannung aufgrund Erd- u. Verkehrslasten<br>Spannung aufgrund anderer Lasten<br>Spannung gesamt                                                                                                       | $\sigma_{qv,qh,qh^*}$ $\sigma_{sonst}$ $\sigma$        | Scheitel<br>0,636<br>-0,187<br>0,450            | Kämpfer<br>-0,694<br>-0,246<br>-0,940           | Sohle<br>0,636<br>-0,180<br>0,457   | N/mm²<br>N/mm²<br>N/mm² |
| Sicherheitsbeiwert Biegezug:<br>Sicherheitsbeiwert Biegedruck:                                                                                                                                        | γBZ<br>γBD                                             | 39,019<br>                                      | <br>18,496                                      | 38,487<br>                          | [-]<br>[-]              |
| außen                                                                                                                                                                                                 |                                                        |                                                 |                                                 |                                     |                         |
| Korrekturfaktor Krümmung außen:                                                                                                                                                                       |                                                        |                                                 | $\alpha_{ka}$                                   | 0,966                               | [-]                     |
| Spannung aufgrund Erd- u. Verkehrslasten<br>Spannung aufgrund anderer Lasten<br>Spannung gesamt                                                                                                       | σ <sub>qv,qh,qh*</sub><br>σ <sub>sonst</sub><br>σ      | Scheitel<br>-1,284<br>-0,219<br>-1,503          | Kämpfer<br>-0,299<br>-0,168<br>-0,467           | Sohle<br>-1,284<br>-0,226<br>-1,510 | N/mm²<br>N/mm²<br>N/mm² |
| Sicherheitsbeiwert Biegezug:<br>Sicherheitsbeiwert Biegedruck:                                                                                                                                        | γBZ<br>γBD                                             | <br>11,918                                      | <br>36,237                                      | <br>11,847                          | [-]<br>[-]              |
| Alle errechneten Sicherheitsbeiwerte des Sp                                                                                                                                                           | annungsnachw                                           | eises sind ausre                                | eichend.                                        |                                     |                         |
| 1.2.6.3 Verformungsnachweis (bei minimaler                                                                                                                                                            | m Grundwasse                                           | r)                                              |                                                 |                                     |                         |
| Rechenmodus:<br>Verhältnis:<br>Verhältnis 'I/(A·rm²)·ĸ~Q':                                                                                                                                            |                                                        | •                                               | linear<br>I/(A·rm²)<br>I/(A·rm²)·ĸ <sub>Q</sub> | 0,0008-<br>0,0010                   |                         |
| Verformungsbeiwert für Biegemomente<br>Verformungsbeiwert für Normalkräfte<br>Verformungsbeiwert für Querkräfte                                                                                       | c <sub>v</sub><br>c <sup>N</sup> v<br>c <sup>Q</sup> v | q <sub>v</sub><br>-0,0833<br>-0,6480<br>-0,3350 | qh<br>0,0833<br>-0,6810<br>0,3350               | qh*<br>0,0640<br>-0,2470<br>0,2430  | [-]                     |
| Resultierender Verformungsbeiwert                                                                                                                                                                     | c' <sub>V</sub>                                        | -0,0848                                         | 0,0837                                          | 0,0645                              | [-]                     |

0,0839

-0,0848

 $\Delta d_{V}$ 

 $\Delta d_h$ 

 $\delta_{V,B}$ 

 $\delta_{V,A}$ 

 $\delta_{v,\text{Ges}}$ 

zul  $\delta_{V}$ 

# Die errechnete Verformung ist kleiner als die zulässige Verformung.

Relative vertikale Verformung (aus Belastung, elastisch, Typ B):

Vorverformung (z. B. aus Fertigung, plastisch, Typ A):

Vertikale Gesamtverformung (Typ A + Typ B):

# 1.2.6.4 Verformungsnachweis (bei maximalem Grundwasser)

C'h

Resultierender Verformungsbeiwert

Horizontale Durchmesseränderung:

Vertikale Durchmesseränderung:

Zulässige Verformung:

-0,0669 [-]

mm

mm

%

%

%

%

2,75

1,47

1,03

1,00

2,03

6,00

| Verhältnis 'I/(A·rm²)⋅κ~Q':                                                                                                                    |                                                     |                               | $I/(A \cdot rm^2) \cdot \kappa_Q$                                             |                  | 0,00101                     | [-]               |
|------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------|-------------------------------|-------------------------------------------------------------------------------|------------------|-----------------------------|-------------------|
| Verformungsbeiwert für Biegemomente<br>Verformungsbeiwert für Normalkräfte<br>Verformungsbeiwert für Querkräfte                                | $\begin{matrix} c_v \\ c^N_v \\ c^Q_v \end{matrix}$ | -0,0833<br>-0,6480<br>-0,3350 | qh<br>0,0833<br>-0,6810<br>0,3350                                             | q <sub>h</sub> * | 0,0640<br>-0,2470<br>0,2430 | [-]<br>[-]<br>[-] |
| Resultierender Verformungsbeiwert<br>Resultierender Verformungsbeiwert                                                                         | C'v<br>C'h                                          | -0,0848<br>0,0839             | 0,0837<br>-0,0848                                                             |                  | 0,0645<br>-0,0669           | [-]<br>[-]        |
| Vertikale Durchmesseränderung:<br>Horizontale Durchmesseränderung:                                                                             |                                                     |                               | $\Delta d_V \ \Delta d_h$                                                     |                  | 2,23<br>1,32                | mm<br>mm          |
| Relative vertikale Verformung (aus Belastung,<br>Vorverformung (z. B. aus Fertigung, plastisch,<br>Vertikale Gesamtverformung (Typ A + Typ B): |                                                     |                               | $\begin{array}{l} \delta_{v,B} \\ \delta_{v,A} \\ \delta_{v,Ges} \end{array}$ |                  | 0,84<br>1,00<br>1,84        | %<br>%<br>%       |
| Zulässige Verformung:                                                                                                                          |                                                     |                               | zul $\delta_{v}$                                                              |                  | 6,00                        | %                 |
| D: 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1                                                                                                       |                                                     |                               |                                                                               |                  |                             |                   |

### Die errechnete Verformung ist kleiner als die zulässige Verformung.

### 1.2.6.5 Nachweis Stabilität radial, linear (bei maximalem Grundwasser)

| Erd- und Verkehrslasten Rohrsteifigkeit: Horizontale Bettungssteifigkeit: Systemsteifigkeit, gewichtet: Abminderungsfaktor Beullast bei Erd-/Verkehrslasten: Reibungswinkel in der Leitungszone: Kritische vertikale Gesamtlast: Vertikale Gesamtlast: Beulsicherheitsbeiwert (vertikale Gesamtlast): | S̄ <sub>R</sub><br>S <sub>Bh</sub><br>V <sub>RB,w</sub><br>κ <sub>v2</sub><br>φ'2<br>krit q <sub>v</sub><br>q <sub>v</sub><br>Y <sub>qv</sub> | 49.006<br>9,600<br>0,0051<br>0,87<br>35,000<br>1.197,3<br>49,25<br>24,31 | N/m²<br>N/mm²<br>[-]<br>[-]<br>kN/m²<br>kN/m² |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------|-----------------------------------------------|
| Wasserdruck + Unterdruck<br>Äußerer Wasserdruck:<br>Unterdruck im Rohr:                                                                                                                                                                                                                               | pa<br>pı-                                                                                                                                     | 19,50<br>0,00                                                            | kN/m²<br>kN/m²                                |
| Rohrsteifigkeit: Systemsteifigkeit: Mittlerer Radius zu Wanddicke: Abminderungsfaktor aufgrund lokaler Vorverformung für Durchschlaglast bei äußerem Wasserdruck:                                                                                                                                     | S <sub>R</sub><br>V <sub>RB</sub><br>r <sub>m</sub> /s<br><sub>Ka1,pa</sub>                                                                   | 13.544<br>0,0014<br>9,95<br>1,00                                         | N/m²<br>[-]<br>[-]                            |
| Relative vertikale Verformung (aus Belastung, elastisch, Typ B): Vorverformung Gesamt: Abminderungsfaktor: Abminderungsfaktor: Durchschlagsbeiwert:                                                                                                                                                   | δv,B<br>δv<br>Ka2,pa<br>Ka,pa<br>αD,pa                                                                                                        | 0,84<br>0,84<br>0,95<br>0,95<br>14,511                                   | %<br>%<br>[-]<br>[-]                          |
| Kritischer Druck:<br>Wasserdruck + Unterdruck im Rohr:<br>Beulsicherheitsbeiwert Druck:                                                                                                                                                                                                               | krit p <sub>a</sub><br>pa+l-<br>γStab,pa                                                                                                      | 186,019<br>19,50<br>9,539                                                | kN/m²<br>kN/m²<br>[-]                         |
| Superposition Sicherheit Stabilität, radial: Erforderlicher Sicherheitsbeiwert, Instabilität:                                                                                                                                                                                                         | γStab,rad<br>erf γstab                                                                                                                        | 6,85<br>2,50                                                             | [-]<br>[-]                                    |

# Der Stabilitätsnachweis ist erbracht.

# 1.2.6.6 Stabilitätsnachweis, nichtlinear (bei minimalem Grundwasser)

Der nichtlineare Stabilitätsnachweis entfällt, da VRB > 1.0 (biegesteifes Rohr) oder relative vertikale Verformung < 6%.

# 1.2.6.7 Stabilitätsnachweis, nichtlinear (bei maximalem Grundwasser)

Der nichtlineare Stabilitätsnachweis entfällt, da VRB > 1.0 (biegesteifes Rohr) oder relative vertikale Verformung < 6%.

1.2.6.8 Nachweis der Sicherheit gegen Versagen bei nicht vorwiegend ruhender Belastung

Nach Norm ist der dynamische Nachweis nicht notwendig (z.B. bei Straßenverkehrslasten > 1,5 m).

Alle notwendigen Nachweise sind erbracht.

# **Statische Berechnung**

Bauvorhaben: A 070 "Juraleitung" Teilabschnitt Katzwang

Erdverkabelungsabschnitt Wolkersdorf - Katzwang Abschnitt: Straßenquerung (Haimendorfstrasse) Baufeld: West / Wolkersdorf Beschreibung:

Auftraggeber: TenneT TSO GmbH

Bernecker Str. 70 95448 Bayreuth

Ingenieurgemeinschaft Katzwangtunnel (IGKWT) Moll-prd GmbH & Co. KG Bearbeiter:

Weststraße 2

57392 Schmallenberg

Dipl.-Ing. (FH) Philipp Dick

Statik-Nr.: 80-23-0269, Entwurfsstatik Erdkabelabschnitt, Straße

Datum: 22.01.2025

1

# 1 Statik nach ATV-DVWK-A 127, 3.Auflage: Entwurfsstatik der Leerrohre im erdverlegten Abschnitt Wolkersdorf

Titel der Teilstatik: Entwurfsstatik der Leerrohre im erdverlegten Abschnitt Wolkersdorf

Annahmen: Die Vordimensionierung erfolgte auf Basis folgender Annahmen:

Verlegung der Leerrohre im Regelgraben, verbaut
 nachzuweisende Leerrohre DA 50. SDR 17

- Belastung der Leerrohre durch Befahrung, SLW 60, im Bau- und Betriebszustand

- zusätzliche Flächenlast durch Zwischenlagerung Aushub

- Abminderung der Standfestigkeit aufgrund der Temperatur im Betriebszustand

- Grabenbreite in Scheitelhöhe angenommen mit 1,5 m

- Baugrundinformationen aus Bericht Dr. Spang, 13.06.2024

- anstehender Boden: Schicht 2.2, Verwitterungsboden, gemischtkörnig

Schlussfolgerungen: Die Nachweise für den Bau- und Betriebszustand für die Kabelschuztrohre, DA 50, SDR 17,

werden unter Berücksichtigung vorstehender Annahmen nicht erbracht.

Es wurde daher ein Leerrohr mit der Konfiguration DA 63, SDR 11 (Wandstärke 5,8 mm) gewählt.

.la

Der Einbau erfolgt auf kompletter Länge im Abschnitt Wolkersdorf.

Berechnungsart: Vollwand-/Profilrohr

Skizzen (Einbau/Rohr) in Ausdruck: Ja

#### 1.1 Eingaben

#### 1.1.1 Sicherheiten

Sicherheitsklasse: A (Regelfall)

Sicherheit Stabilität nach Tabelle 13: Ohne Vorverformungen (2,5 / 2,0)

Zulässige Verformung: 6% (Regelfall)

Behandlung von Innendruck: Gemäß Fußnote des ATV-DVWK-A 127

Kleinere Biegedruck-Sicherheiten: Nein (ATV-DVWK-A 127)

Nachweis bei nicht vorwiegend ruhender Belastung: Nach Regelwerk

Berücksichtigung von dyn pvh\*: Nach Norm

Berücksichtigung der Vorverformungen Typ A in Verformungsnachweis:

Ja

ATV DVANK A 127/2000 (nach

Behandlung Systemsteifigkeit VRB nach:

ATV-DVWK-A 127:2000 (nach Rechenwert)

Rohrsteifigkeit nach Regelwerk:

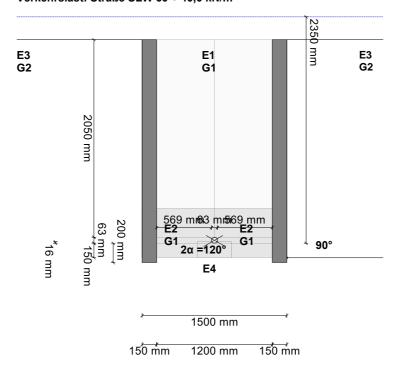
## 1.1.2 **Boden**

Bodengruppe Verfüllung: G1

Berechnung E1: Tabelle 8 (A127)

Bodengruppe Einbettung: G1

Berechnung E20: Tabelle 8 (A127)


Bodengruppe anstehender Boden: G2
Berechnung E3: E-Modul

E-Modul E3: E3 25,00 N/mm<sup>2</sup>

E4 = 10 · E1: Ja Anwendung von Silotheorie: Nein

| K2 nach Norm:                                                                                                                                     | Ja                                                    |                      |             |
|---------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|----------------------|-------------|
| 1.1.3 Belastung                                                                                                                                   |                                                       |                      |             |
| Überdeckungshöhe: Minimaler Grundwasserstand über Sohle: Maximaler Grundwasserstand über Sohle: Auftriebsnachweis führen:                         | h<br>hw <sub>,min</sub><br>hw <sub>,max</sub><br>Nein | 2,05<br>0,00<br>2,35 | m<br>m<br>m |
| Wichte des Bodens:<br>Manuelle Angabe der Wichte des Bodens unter Auftrieb:                                                                       | γ <sub>B</sub><br>Nein                                | 20,0                 | kN/m³       |
| Zusätzliche Flächenlast:<br>Zusätzliche Flächenlast ist Dammschüttung:                                                                            | p <sub>0</sub><br>Nein                                | 40,0                 | kN/m²       |
| Innendruck, kurzzeitig wirkend:<br>Innendruck, langzeitig:<br>Wasserfüllung (z.B. Staukanal):<br>Verkehrslast:                                    | PI,K<br>PI,L<br>Nein<br>Straße SLW 60                 | 0,00                 | bar<br>bar  |
| Ansatz horizontaler Belastungen aus Verkehr im Ermüdungsnachweis:                                                                                 | αqhT,dyn                                              | 0,00                 | %           |
| 1.1.4 Einbau  Einbauweise: Grabenbreite in Scheitelhöhe:                                                                                          | Graben<br>b                                           | 1,50                 | m           |
| Mindestgrabenbreite prüfen: Stärke der Bettungsschicht automatisch ermitteln: Böschungswinkel: Überschüttungsbedingung:                           | Nein<br>Ja<br>ß<br>A2                                 | 90                   | 0           |
| Einbettungsbedingung: Berücksichtigung der Unterrammung nach Bericht der ATV-AG 1.5.5.: Tiefe der Unterrammung: Beiwert kS automatisch ermitteln: | B2<br>Ja<br>t <sub>s</sub><br>Ja                      | 0,20                 | m           |
| Dicke des Verbaus (einseitig):<br>Auflagerart:<br>Auflagerwinkel:                                                                                 | bs<br>Lose<br>120°                                    | 0,15                 | m           |
| Relative Ausladung automatisch ermitteln:<br>Untere Sockelhöhe vorgeben:<br>Höhe des unteren Teils des Sockels:                                   | Ja<br>Ja<br>h <sub>s,u</sub>                          | 0,150                | m           |
| 1.1.5 Vollwand/Profil-Rohr                                                                                                                        |                                                       |                      |             |
| Rohrauswahl:                                                                                                                                      | Vollwand                                              |                      |             |
| Material-Klasse:<br>Vorverformung Typ A:<br>Lokale Vorverformung:<br>Auswahl der Eingaben:                                                        | Thermoplast $\delta_{v,A}$ $\delta_{v,I}$ Da und s    | 1,0<br>0,0           | %<br>%      |
| Außendurchmesser:<br>Wandstärke:                                                                                                                  | d <sub>a</sub><br>s                                   | 63,0<br>5,8          | mm<br>mm    |
| Perforation:                                                                                                                                      | Ohne Perforation                                      | l                    |             |
| 1.1.5.1 Thermoplast                                                                                                                               |                                                       |                      |             |
| Auswahl Material: Material: Grund der Abminderung: Temperatureinfluss:                                                                            | Nach ATV / DWA<br>PE-HD<br>Temperatur<br>20 > A=1,00  | Λ.                   |             |

Verkehrslast: Straße SLW 60 + 40,0 kN/m²



# 1.2 Ergebnisse

#### 1.2.1 Mindestgrabenbreite nach DIN EN 1610:2015-12

Die Mindestgrabenbreite nach DIN EN 1610 / DWA-A 139 wird nicht überprüft.

#### 1.2.2 Nachweise Kurzzeit

#### 1.2.2.1 Spannungsnachweis (bei minimalem Grundwasser)

|                       | Scheitel        | Kämpfer                                                                        | Sohle                                                                                                                           |                                                                                                                                                   |
|-----------------------|-----------------|--------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|
| γ                     | -3,251          | 4,315                                                                          | -3,006                                                                                                                          | [-]                                                                                                                                               |
| Υ                     | 3,068           | -2,584                                                                         | 2,873                                                                                                                           | [-]                                                                                                                                               |
| kbeanspruchungen sind | durch ein nega  | atives Vorzeiche                                                               | n gekennzeic                                                                                                                    | hnet)                                                                                                                                             |
| ezugspannungen:       |                 | erf γ <sub>RBZ</sub>                                                           | 2,50                                                                                                                            | [-]                                                                                                                                               |
| edruckspannungen:     |                 | erf γ <sub>RBD</sub>                                                           | 2,50                                                                                                                            | [-]                                                                                                                                               |
|                       | ezugspannungen: | γ -3,251<br>γ 3,068<br>kbeanspruchungen sind durch ein nega<br>ezugspannungen: | γ -3,251 4,315<br>γ 3,068 -2,584<br>kbeanspruchungen sind durch ein negatives Vorzeiche<br>ezugspannungen: erf γ <sub>RBZ</sub> | γ -3,251 4,315 -3,006<br>γ 3,068 -2,584 2,873<br>kbeanspruchungen sind durch ein negatives Vorzeichen gekennzeic<br>ezugspannungen: erf γRBZ 2,50 |

#### Alle errechneten Sicherheitsbeiwerte des Spannungsnachweises sind ausreichend.

#### 1.2.2.2 Spannungsnachweis (bei maximalem Grundwasser)

|                                                                                                     |                    | Scheitel | Kämpfer              | Sohle  |     |
|-----------------------------------------------------------------------------------------------------|--------------------|----------|----------------------|--------|-----|
| Sicherheitsbeiwert außen                                                                            | γ                  | -3,966   | 5,543                | -3,675 | [-] |
| Sicherheitsbeiwert innen                                                                            | Υ                  | 3,924    | -3,156               | 3,670  | [-] |
| (Sicherheitsbeiwerte gegen Biegedruckbeanspruchungen sind durch ein negatives Vorzeichen gekennzeic |                    |          |                      | hnet)  |     |
| Erforderlicher Sicherheitsbeiwert, Bieg                                                             | gezugspannungen:   |          | erf γ <sub>RBZ</sub> | 2,50   | [-] |
| Erforderlicher Sicherheitsbeiwert, Bieg                                                             | gedruckspannungen: |          | erf γ <sub>RBD</sub> | 2,50   | [-] |

#### Alle errechneten Sicherheitsbeiwerte des Spannungsnachweises sind ausreichend.

#### 1.2.2.3 Verformungsnachweis (bei minimalem Grundwasser)

| Vertikale Gesamtverformung (Typ A + Typ B): | $\delta_{v,Ges}$ | 4,03 | % |
|---------------------------------------------|------------------|------|---|
| Zulässige Verformung:                       | $zul \delta_V$   | 6,00 | % |

#### Die errechnete Verformung ist kleiner als die zulässige Verformung.

#### 1.2.2.4 Verformungsnachweis (bei maximalem Grundwasser)

| Vertikale Gesamtverformung (Typ A + Typ B): | $\delta_{v,Ges}$ | 3,43 | % |
|---------------------------------------------|------------------|------|---|
| Zulässige Verformung:                       | zul $\delta_{v}$ | 6,00 | % |

#### Die errechnete Verformung ist kleiner als die zulässige Verformung.

## 1.2.3 Nachweise Langzeit

#### 1.2.3.1 Spannungsnachweis (bei minimalem Grundwasser)

|                                                                                                          |                   | Scheitel | Kämpfer              | Sohle  |       |
|----------------------------------------------------------------------------------------------------------|-------------------|----------|----------------------|--------|-------|
| Sicherheitsbeiwert außen                                                                                 | γ                 | -3,895   | 6,465                | -3,525 | [-]   |
| Sicherheitsbeiwert innen                                                                                 | γ                 | 4,109    | -3,244               | 3,743  | [-]   |
| (Sicherheitsbeiwerte gegen Biegedruckbeanspruchungen sind durch ein negatives Vorzeichen gekennzeichnet) |                   |          |                      |        | hnet) |
| Erforderlicher Sicherheitsbeiwert, Bieg                                                                  | ezugspannungen:   |          | erf γ <sub>RBZ</sub> | 2,50   | [-]   |
| Erforderlicher Sicherheitsbeiwert, Bieg                                                                  | edruckspannungen: |          | erf γ <sub>RBD</sub> | 2,50   | [-]   |

# Alle errechneten Sicherheitsbeiwerte des Spannungsnachweises sind ausreichend.

#### 1.2.3.2 Spannungsnachweis (bei maximalem Grundwasser)

|                                                                                                         |                   | Scheitel | Kämpfer              | Sohle  |       |
|---------------------------------------------------------------------------------------------------------|-------------------|----------|----------------------|--------|-------|
| Sicherheitsbeiwert außen                                                                                | γ                 | -4,488   | 7,806                | -4,089 | [-]   |
| Sicherheitsbeiwert innen                                                                                | γ                 | 5,003    | -3,713               | 4,565  | [-]   |
| (Sicherheitsbeiwerte gegen Biegedruckbeanspruchungen sind durch ein negatives Vorzeichen gekennzeichnet |                   |          |                      |        | hnet) |
| Erforderlicher Sicherheitsbeiwert, Bieg                                                                 | ezugspannungen:   |          | erf γ <sub>RBZ</sub> | 2,50   | [-]   |
| Erforderlicher Sicherheitsbeiwert, Bieg                                                                 | edruckspannungen: |          | erf γ <sub>RBD</sub> | 2,50   | [-]   |

| Alle errechneten Sicherheitsbeiwerte des Spannungsnachweises sind ausre | ichend.                        |         |       |
|-------------------------------------------------------------------------|--------------------------------|---------|-------|
| 40001/4                                                                 |                                |         |       |
| 1.2.3.3 Verformungsnachweis (bei minimalem Grundwasser)                 |                                |         |       |
| Vertikale Gesamtverformung (Typ A + Typ B):                             | $\delta_{\text{V},\text{Ges}}$ | 5,43    | %     |
| Zulässige Verformung:                                                   | zul $\delta_V$                 | 6,00    | %     |
| Die errechnete Verformung ist kleiner als die zulässige Verformung.     |                                |         |       |
|                                                                         |                                |         |       |
| 1.2.3.4 Verformungsnachweis (bei maximalem Grundwasser)                 |                                |         |       |
| Vertikale Gesamtverformung (Typ A + Typ B):                             | $\delta_{v.Ges}$               | 4,46    | %     |
| Zulässige Verformung:                                                   | $zul \delta_v$                 | 6,00    | %     |
| Die errechnete Verformung ist kleiner als die zulässige Verformung.     |                                |         |       |
|                                                                         |                                |         |       |
| 1.2.3.5 Nachweis Stabilität radial, linear (bei maximalem Grundwasser)  |                                |         |       |
| Erd- und Verkehrslasten                                                 |                                |         |       |
| Kritische vertikale Gesamtlast:                                         | krit q <sub>v</sub>            | 1.406,0 | kN/m² |
| Vertikale Gesamtlast:                                                   | $q_{V}$                        | 161,94  | kN/m² |
| Beulsicherheitsbeiwert (vertikale Gesamtlast):                          | Yqv                            | 8,68    | [-]   |
| Wasserdruck + Unterdruck                                                |                                |         |       |
| Äußerer Wasserdruck:                                                    | pa                             | 23,50   | kN/m² |
| Unterdruck im Rohr:                                                     | рі-                            | 0,00    | kN/m² |
| Kritischer Druck:                                                       | krit pa                        | 258,350 | kN/m² |
| Wasserdruck + Unterdruck im Rohr:                                       | p <sub>a+I</sub> -             | 23,50   | kN/m² |
| Beulsicherheitsbeiwert Druck:                                           | γStab,pa                       | 10,994  | [-]   |
| Superposition                                                           |                                |         |       |
| Sicherheit Stabilität, radial:                                          | <b>γ</b> Stab,rad              | 4,85    | [-]   |
| Erforderlicher Sicherheitsbeiwert, Instabilität:                        | erf γ <sub>stab</sub>          | 2,50    | [-]   |
| Der Stabilitätsnachweis ist erbracht.                                   |                                |         |       |

#### 1.2.3.6 Stabilitätsnachweis, nichtlinear (bei minimalem Grundwasser)

Der nichtlineare Stabilitätsnachweis entfällt, da VRB > 1.0 (biegesteifes Rohr) oder relative vertikale Verformung < 6%.

# 1.2.3.7 Stabilitätsnachweis, nichtlinear (bei maximalem Grundwasser)

Der nichtlineare Stabilitätsnachweis entfällt, da VRB > 1.0 (biegesteifes Rohr) oder relative vertikale Verformung < 6%.

#### 1.2.3.8 Nachweis der Sicherheit gegen Versagen bei nicht vorwiegend ruhender Belastung

Nach Norm ist der dynamische Nachweis nicht notwendig (z.B. bei Straßenverkehrslasten > 1,5 m).

#### Alle notwendigen Nachweise sind erbracht.

# **Statische Berechnung**

Bauvorhaben: A 070 "Juraleitung" Teilabschnitt Katzwang

Beschreibung: Erdverkabelungsabschnitt Wolkersdorf - Katzwang

Abschnitt: Erdkabelgraben, Baustelleneinrichtungsfläche

1

Baufeld: Ost / Katzwang

Auftraggeber: TenneT TSO GmbH

Bernecker Str. 70 95448 Bayreuth

Ingenieurgemeinschaft Katzwangtunnel (IGKWT) Moll-prd GmbH & Co. KG Bearbeiter:

Weststraße 2

57392 Schmallenberg

Dipl.-Ing. (FH) Philipp Dick

Statik-Nr.: 80-23-0269, Entwurfsstatik Erdkabelabschnitt

Datum: 22.01.2025

# 1 Statik nach ATV-DVWK-A 127, 3.Auflage: Entwurfsstatik der Leerrohre im erdverlegten Abschnitt Katzwang

Titel der Teilstatik: Entwurfsstatik der Leerrohre im erdverlegten Abschnitt Katzwang

Annahmen: Die Vordimensionierung erfolgte auf Basis folgender Annahmen:

- Verlegung der Leerrohre im Regelgraben, geböscht mit 45°

- nachzuweisende Leerrohre DA 63, SDR 11

Belastung der Leerrohre durch Befahrung, SLW 60, im Bau- und Betriebszustand
 Abminderung der Standfestigkeit aufgrund der Temperatur im Betriebszustand

- Grabenbreite in Scheitelhöhe angenommen mit 1,5 m

- Baugrundinformationen aus Bericht Dr. Spang, 13.06.2024

- anstehender Boden: Schicht 2.2, Verwitterungsboden, gemischtkörnig

Schlussfolgerungen: Die Nachweise für den Bau- und Betriebszustand für die Leerrohre, DA 63, SDR 11, werden unter

Berücksichtigung vorstehender Annahmen erbracht.

Berechnungsart: Vollwand-/Profilrohr

Skizzen (Einbau/Rohr) in Ausdruck: Ja

#### 1.1 Eingaben

#### 1.1.1 Sicherheiten

Sicherheitsklasse: A (Regelfall)

Sicherheit Stabilität nach Tabelle 13: Ohne Vorverformungen (2,5 / 2,0)

Zulässige Verformung: 6% (Regelfall)

Behandlung von Innendruck: Gemäß Fußnote des ATV-DVWK-A 127

Kleinere Biegedruck-Sicherheiten: Nein (ATV-DVWK-A 127)

Nachweis bei nicht vorwiegend ruhender Belastung:

Nach Regelwerk
Berücksichtigung von dyn pvh\*:

Nach Norm

Berücksichtigung der Vorverformungen Typ A in Verformungsnachweis: Ja

Behandlung Systemsteifigkeit VRB nach: ATV-DVWK-A 127:2000 (nach

Rohrsteifigkeit nach Regelwerk: Rechenwert)

# 1.1.2 Boden

Bodengruppe Verfüllung: G1

Berechnung E1: Tabelle 8 (A127)

Bodengruppe Einbettung: G1

Berechnung E20: Tabelle 8 (A127)

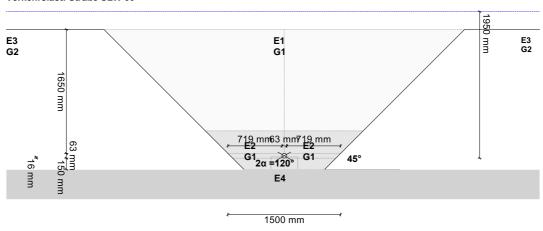
Bodengruppe anstehender Boden: G2
Berechnung E3: E-Modul

E-Modul E3: E3 25,00 N/mm<sup>2</sup>

E4 = 10 · E1: Ja
Anwendung von Silotheorie: Nein
K2 nach Norm: Ja

#### 1.1.3 Belastung

Überdeckungshöhe: h 1,65 m


| Minimaler Grundwasserstand über Sohle: Maximaler Grundwasserstand über Sohle: Auftriebsnachweis führen: Wichte des Bodens: Manuelle Angabe der Wichte des Bodens unter Auftrieb: Zusätzliche Flächenlast: Innendruck, kurzzeitig wirkend: Innendruck, langzeitig: Wasserfüllung (z.B. Staukanal): Verkehrslast: Ansatz horizontaler Belastungen aus Verkehr im Ermüdungsnachweis: | hw,min<br>hw,max<br>Nein<br>γB<br>Nein<br>po<br>PI,K<br>PI,L<br>Nein<br>Straße SLW 60<br>αqhT,dyn | 0,00<br>1,95<br>20,0<br>0,0<br>0,00<br>0,00 | m<br>m<br>kN/m³<br>kN/m²<br>bar<br>bar |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|---------------------------------------------|----------------------------------------|
| 1.1.4 Einbau                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                   |                                             |                                        |
| Einbauweise:<br>Grabenbreite in Scheitelhöhe:<br>Mindestgrabenbreite prüfen:<br>Stärke der Bettungsschicht automatisch ermitteln:                                                                                                                                                                                                                                                 | Graben<br>b<br>Nein<br>Ja                                                                         | 1,50                                        | m                                      |
| Böschungswinkel: Überschüttungsbedingung: Einbettungsbedingung: Auflagerart: Auflagerwinkel: Relative Ausladung automatisch ermitteln: Untere Sockelhöhe vorgeben:                                                                                                                                                                                                                | ß<br>A1<br>B1<br>Lose<br>120°<br>Ja<br>Ja                                                         | 45                                          | •                                      |
| Höhe des unteren Teils des Sockels:                                                                                                                                                                                                                                                                                                                                               | h <sub>s,u</sub>                                                                                  | 0,150                                       | m                                      |
| 1.1.5 Vollwand/Profil-Rohr                                                                                                                                                                                                                                                                                                                                                        |                                                                                                   |                                             |                                        |
| Rohrauswahl:                                                                                                                                                                                                                                                                                                                                                                      | Vollwand                                                                                          |                                             |                                        |
| Material-Klasse: Vorverformung Typ A: Lokale Vorverformung: Auswahl der Eingaben: Außendurchmesser: SDR:                                                                                                                                                                                                                                                                          | Thermoplast $\delta_{V,A}$ $\delta_{V,I}$ SDR und Da $d_a$ SDR                                    | 1,0<br>0,0<br>63,0<br>11,0                  | %<br>%<br>mm<br>[-]                    |
| Perforation:                                                                                                                                                                                                                                                                                                                                                                      | Ohne Perforation                                                                                  | 1                                           |                                        |

# 1.1.5.1 Thermoplast

Auswahl Material:

Nach ATV / DWA PE-HD Temperatur 20 > A=1,00 Material:
Grund der Abminderung:
Temperatureinfluss:

#### Verkehrslast: Straße SLW 60



1374 mm

63 mm

63 mm

# 1.2 Ergebnisse

#### 1.2.1 Mindestgrabenbreite nach DIN EN 1610:2015-12

Die Mindestgrabenbreite nach DIN EN 1610 / DWA-A 139 wird nicht überprüft.

#### 1.2.2 Nachweise Kurzzeit

#### 1.2.2.1 Spannungsnachweis (bei minimalem Grundwasser)

|                                                                                                       |                   | Scheitel | Kämpfer              | Sohle   |     |
|-------------------------------------------------------------------------------------------------------|-------------------|----------|----------------------|---------|-----|
| Sicherheitsbeiwert außen                                                                              | γ                 | -11,900  | 23,548               | -10,619 | [-] |
| Sicherheitsbeiwert innen                                                                              | γ                 | 13,514   | -10,309              | 12,055  | [-] |
| (Sicherheitsbeiwerte gegen Biegedruckbeanspruchungen sind durch ein negatives Vorzeichen gekennzeichr |                   |          |                      | hnet)   |     |
| Erforderlicher Sicherheitsbeiwert, Bieg                                                               | ezugspannungen:   |          | erf γ <sub>RBZ</sub> | 2,50    | [-] |
| Erforderlicher Sicherheitsbeiwert, Bieg                                                               | edruckspannungen: |          | erf γ <sub>RBD</sub> | 2,50    | [-] |

#### Alle errechneten Sicherheitsbeiwerte des Spannungsnachweises sind ausreichend.

#### 1.2.2.2 Spannungsnachweis (bei maximalem Grundwasser)

|                     | Scheitel         | Kämpfer                                                                      | Sohle                                                                                                               |                                                                                                                                                      |
|---------------------|------------------|------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|
| γ                   | -15,191          | 37,311                                                                       | -13,683                                                                                                             | [-]                                                                                                                                                  |
| γ                   | 20,394           | -13,121                                                                      | 18,035                                                                                                              | [-]                                                                                                                                                  |
| eanspruchungen sind | d durch ein nega | atives Vorzeiche                                                             | n gekennzeich                                                                                                       | nnet)                                                                                                                                                |
| ugspannungen:       |                  | erf γ <sub>RBZ</sub>                                                         | 2,50                                                                                                                | [-]                                                                                                                                                  |
| ruckspannungen:     |                  | erf γ <sub>RBD</sub>                                                         | 2,50                                                                                                                | [-]                                                                                                                                                  |
|                     | ıgspannungen:    | γ -15,191<br>γ 20,394<br>eanspruchungen sind durch ein nega<br>ugspannungen: | γ -15,191 37,311<br>γ 20,394 -13,121<br>eanspruchungen sind durch ein negatives Vorzeiche<br>ugspannungen: erf γRBZ | γ -15,191 37,311 -13,683<br>γ 20,394 -13,121 18,035<br>eanspruchungen sind durch ein negatives Vorzeichen gekennzeich<br>ugspannungen: erf γRBZ 2,50 |

#### Alle errechneten Sicherheitsbeiwerte des Spannungsnachweises sind ausreichend.

#### 1.2.2.3 Verformungsnachweis (bei minimalem Grundwasser)

| Vertikale Gesamtverformung (Typ A + Typ B): | $\delta_{ m v,Ges}$ | 1,77 | % |
|---------------------------------------------|---------------------|------|---|
| Zulässige Verformung:                       | zul $\delta_V$      | 6,00 | % |

#### Die errechnete Verformung ist kleiner als die zulässige Verformung.

#### 1.2.2.4 Verformungsnachweis (bei maximalem Grundwasser)

| Vertikale Gesamtverformung (Typ A + Typ B): | $\delta_{v,Ges}$ | 1,57 | % |
|---------------------------------------------|------------------|------|---|
| Zulässige Verformung:                       | zul $\delta_{V}$ | 6,00 | % |

#### Die errechnete Verformung ist kleiner als die zulässige Verformung.

## 1.2.3 Nachweise Langzeit

#### 1.2.3.1 Spannungsnachweis (bei minimalem Grundwasser)

|                                                                                                          |                    | Scheitel | Kämpfer              | Sohle   |     |  |
|----------------------------------------------------------------------------------------------------------|--------------------|----------|----------------------|---------|-----|--|
| Sicherheitsbeiwert außen                                                                                 | Υ                  | -13,124  | 38,468               | -11,446 | [-] |  |
| Sicherheitsbeiwert innen                                                                                 | γ                  | 17,215   | -12,038              | 14,715  | [-] |  |
| (Sicherheitsbeiwerte gegen Biegedruckbeanspruchungen sind durch ein negatives Vorzeichen gekennzeichnet) |                    |          |                      |         |     |  |
| Erforderlicher Sicherheitsbeiwert, Bieg                                                                  | jezugspannungen:   |          | erf γ <sub>RBZ</sub> | 2,50    | [-] |  |
| Erforderlicher Sicherheitsbeiwert, Bieg                                                                  | jedruckspannungen: |          | erf yrbd             | 2,50    | [-] |  |

# Alle errechneten Sicherheitsbeiwerte des Spannungsnachweises sind ausreichend.

#### 1.2.3.2 Spannungsnachweis (bei maximalem Grundwasser)

|                                                                                                          |   | Scheitel | Kämpfer              | Sohle   |     |  |  |
|----------------------------------------------------------------------------------------------------------|---|----------|----------------------|---------|-----|--|--|
| Sicherheitsbeiwert außen                                                                                 | γ | -15,321  | 50,324               | -13,671 | [-] |  |  |
| Sicherheitsbeiwert innen                                                                                 | γ | 23,177   | -13,644              | 19,950  | [-] |  |  |
| (Sicherheitsbeiwerte gegen Biegedruckbeanspruchungen sind durch ein negatives Vorzeichen gekennzeichnet) |   |          |                      |         |     |  |  |
| Erforderlicher Sicherheitsbeiwert, Biegezugspannungen:                                                   |   |          | erf γ <sub>RBZ</sub> | 2,50    | [-] |  |  |
| Erforderlicher Sicherheitsbeiwert, Biegedruckspannungen:                                                 |   |          | erf γ <sub>RBD</sub> | 2,50    | [-] |  |  |

| Alle errechneten Sicherheitsbeiwerte des Spannungsnachweises sind ausrei                                                                            | chend.                                                          |                                             |                                         |
|-----------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------|---------------------------------------------|-----------------------------------------|
| 1.2.3.3 Verformungsnachweis (bei minimalem Grundwasser)                                                                                             |                                                                 |                                             |                                         |
| Vertikale Gesamtverformung (Typ A + Typ B):<br>Zulässige Verformung:                                                                                | $\begin{array}{c} \delta_{v,Ges} \\ zul \ \delta_v \end{array}$ | 1,91<br>6,00                                | %<br>%                                  |
| Die errechnete Verformung ist kleiner als die zulässige Verformung.                                                                                 |                                                                 |                                             |                                         |
| 1.2.3.4 Verformungsnachweis (bei maximalem Grundwasser)                                                                                             |                                                                 |                                             |                                         |
| Vertikale Gesamtverformung (Typ A + Typ B):<br>Zulässige Verformung:                                                                                | $\begin{array}{c} \delta_{v,Ges} \\ zul \ \delta_v \end{array}$ | 1,64<br>6,00                                | %<br>%                                  |
| Die errechnete Verformung ist kleiner als die zulässige Verformung.                                                                                 |                                                                 |                                             |                                         |
| 1.2.3.5 Nachweis Stabilität radial, linear (bei maximalem Grundwasser)                                                                              |                                                                 |                                             |                                         |
| Erd- und Verkehrslasten Kritische vertikale Gesamtlast: Vertikale Gesamtlast: Beulsicherheitsbeiwert (vertikale Gesamtlast):                        | krit q <sub>v</sub><br>q <sub>v</sub><br>Yqv                    | 3.304,7<br>65,08<br>50,78                   | kN/m²<br>kN/m²<br>[-]                   |
| Wasserdruck + Unterdruck Äußerer Wasserdruck: Unterdruck im Rohr: Kritischer Druck: Wasserdruck + Unterdruck im Rohr: Beulsicherheitsbeiwert Druck: | Pa<br>pı-<br>krit pa<br>pa+ι-<br>YStab,pa                       | 19,50<br>0,00<br>793,876<br>19,50<br>40,712 | kN/m²<br>kN/m²<br>kN/m²<br>kN/m²<br>[-] |
| Superposition Sicherheit Stabilität, radial: Erforderlicher Sicherheitsbeiwert, Instabilität:                                                       | γStab,rad<br>erf γ <sub>stab</sub>                              | 22,60<br>2,50                               | [-]<br>[-]                              |
| Der Stabilitätsnachweis ist erbracht.                                                                                                               |                                                                 |                                             |                                         |

#### 1.2.3.6 Stabilitätsnachweis, nichtlinear (bei minimalem Grundwasser)

Der nichtlineare Stabilitätsnachweis entfällt, da VRB > 1.0 (biegesteifes Rohr) oder relative vertikale Verformung < 6%.

# 1.2.3.7 Stabilitätsnachweis, nichtlinear (bei maximalem Grundwasser)

Der nichtlineare Stabilitätsnachweis entfällt, da VRB > 1.0 (biegesteifes Rohr) oder relative vertikale Verformung < 6%.

#### 1.2.3.8 Nachweis der Sicherheit gegen Versagen bei nicht vorwiegend ruhender Belastung

Nach Norm ist der dynamische Nachweis nicht notwendig (z.B. bei Straßenverkehrslasten > 1,5 m).

#### Alle notwendigen Nachweise sind erbracht.