Projekt:

Straßenbahn-Verlängerung_Minervastraße Berechnung für Julius-Loßmann-Straße

Bemessung des Oberbaus nach RStO 12 - Fahrbahn

Ermittlung der dimensionierungsrelevanten Beanspruchung [B]

Methode 1.2 - Bestimmung von B bei konstanten Faktoren

$$B = N*DTA^{(SV)}*q_{Bm}*f_1*f_2*f_3*f_z*365$$

$$f_z = \frac{(1+p)^N - 1}{p * N}$$

Julius-Loßmann-Straße			
Nutzungszeitraum	N	30 [a]	
Durchschnittliche tägliche Verkehrsstärke	DTV	27000 [Kfz/Tag]	
SV-Anteil	DTV ^(SV)	5,00 [%]	
Durchschnittliche tägliche Verkehrsstärke des SV		1350	CM Austrilla 2 and 4 C O/
Achszahlfaktor	f_A	4,00 [-]	SV-Anteil > 3 und ≤ 6 %
Durchschn. tägl. Anzahl der Achschsübergänge des SV	DTA ^(SV)	5400	
Lastkollektivquotient	q_{Bm}	0,25 [-]	Bundesstraße oder SV-Anteil > 3 und ≤ 6 %
Fahrstreifenfaktor zur Ermittlung des DTV ^(sv)	f_1	0,50 [-]	4 Fahrstreifen; bei Erfassung DTV in beiden FR
Fahrstreifenbreitenfaktor	f_2	1,10 [-]	3,25 bis unter 3,75
Steigungsfaktor	f_3	1,00 [-]	Höchstlängsneigung bis 2 %
Mittlerer Jährlicher Zuwachsfaktor des Schwerverkehrs	f _z	1,352 [-]	N=30 und p=0,02
Gesamtbeanspruchung	B =	10.994.457 →	Belastungsklasse Bk32

A) Mindestdicke des frostsicheren Oberbaus

Ausgangswerte für die Bestimmung der Mindestdicke

	Dicke in cm bei Belastungsklasse			
Frostempfindlichkeitsklasse	Bk	Bk	Bk	
	100 - 10	3,2 - 1,0	0,3	
F2	55	50	10	
F3	65	60	50	

Mehr- oder Minderdicken

Örtliche Ver	haltnisse	Α	В	С	D	E
	Zone I	0 cm				
Frosteinwirkung	Zone II	5 cm				
	Zone III	15 cm				
	ungünstige Klimaeinflüsse z. B.					
	durch Nordhang oder in		5 cm			
	Kammlagen von Gebirgen					
kleinräumige Klimaunterschiede	keine besonderen Klimaeinflüsse		0 cm			
	günstige Klimaeinflüsse bei					
	geschlossener seitlicher		-5 cm			
	Bebauung entlang der Straße					
	Kein Grund- und Schichten-					
	wasser bis in eine Tiefe von 1,5			0 cm		
AMerican and Wike in a city of the American	m unter Planum					
Wasserverhältnisse im Untergrund	Grund- oder Schichtenwasser					
	dauernd oder zeitweise höher			5 cm		
	als 1,5 m unter Planum					
	Einschnitt, Anschnitt				5 cm	
Lage der Gradiente	Geländehöhe bis Damm ≤ 2,0 m				0 cm	
	Damm > 2,0 m				-5 cm	
	Entwässerung der Fahrbahn					
	über Mulden, Gräben bzw.					0 cm
Entwässerung der Fahrbahn/	Böschungen					
Ausführung der Randbereiche	Entwässerung der Fahrbahn und					
	Randbereiche über Rinnen bzw.					-5 cm
	Abläufe und Rohrleitungen					

Mindestdicke des frostsicheren Oberbaus

Ausg	ang	ζSW	ert

		65 cm
Α	+	5 cm
В	+	0 cm
C	+	0 cm
D	+	0 cm
E	+	-5 cm
		65 cm

B) Mindestdicke aus Tragfähigkeitsgründen

Belastungsklasse Bk32

Asphaltdecke	Tafel 1, Zeile 3		12 cm
Asphalttragschicht	Tafel 1, Zeile 3	+	14 cm
Schottertragschicht	Tafel 1, Zeile 3	+	15 cm
Frostschutzschicht	Tafel 1, Zeile 3	+	30 cm
			71 000

(It. ZTV SoB-StB, Abs. 2.3.4.2 für Bk32: Ev2 = 45 MPa (Planum) bzw. 120 MPa (FSS) → Mindestdicke FSS aus überw. ungebrochenem Material nach Tabelle 8 RStO 2012 = 30 cm)

C) Maßgebende Dicke aus Frostsicherheit / Tragfähigkeit

Belastungsklasse Bk32

71 cm