1. Ermittlung der Wassermengen für Einzugsgebiet West

Regenspende $r_{15;1}$ 117,8 l/s

Nr.	von Bau-km	bis m Bau-km	Länge	Breite	Fläche	Fläche	Befestigung	Bemerkung	Abfluß beiwert	Ared	Regen spende	spez. Versicker- rate	Wasser menge
			[m]	[m]	[m²]	[ha]			[-]	[ha]	[l/s*ha]	[l/s*ha]	[l/s]
Abs	hnitt 1												
1	000+000	000+032	32	8,50		0,027	Fahrbahn		0,9	0,024	117,8	0	2,88
2	000+000	000+032	32	1,50		0,005	Bankett	Nord	0,9	0,004	117,8	0	0,51
3	000+000	000+032	32	0,50		0,002	Fahrbahn	Pendelrinne	0,9	0,001	117,8	0	0,17
Abs	hnitt 2												
4	000+032	000+540	508	8,50		0,432	Fahrbahn		0,9	0,389	117,8	0	45,78
5	000+417	000+540	123	3,50		0,043	Fahrbahn	V-Spur	0,9	0,039	117,8	0	4,56
6	000+330	000+478	148	3,50		0,052	Fahrbahn	V-Spur	0,9	0,047	117,8	0	5,49
7	000+200	000+366	166	3,50		0,058	Fahrbahn	B-Spur	0,9	0,052	117,8	0	6,16
8	000+032	000+185	153	1,50		0,023	Bankett	Nord	0,9	0,021	117,8	0	2,43
9	000+185	000+480	295	2,00		0,059	Bankett	Süd	0,9	0,053	117,8	0	6,26
10	000+032	000+113	81	0,50		0,004	Fahrbahn	Pendelrinne	0,9	0,004	117,8	0	0,43
Abs	chnitt 3												
11	-000+232	000+000	232	8,50		0,197	Fahrbahn		0,9	0,177	117,8	0	20,91
12	-000+232	000+000	232	0,50		0,012	Fahrbahn	Pendelrinne	0,9	0,010	117,8	0	1,23
13	-000+232	000+000	232	2,00		0,046	Bankett	Nord	0,9	0,042	117,8	0	4,92
Ram	pen Nord												
14	0+025	0+045	20	8,50		0,017	Fahrbahn	Einrampe	0,9	0,015	117,8	0	1,80
15	0+045	0+074	29	6,00		0,017	Fahrbahn	Einrampe	0,9	0,016	117,8	0	1,84
16	0+025	0+074	49	2,00		0,010	Bankett	Einrampe	0,9	0,009	117,8	0	1,04
17	0+010	0+034	24	6,00		0,014	Fahrbahn	Ausrampe	0,9	0,013	117,8	0	1,53
18	0+034	0+060	26	8,50		0,022	Fahrbahn	Ausrampe	0,9	0,020	117,8	0	2,34
19	0+010	0+060	50	2,00		0,010	Bankett	Ausrampe	0,9	0,009	117,8	0	1,06
20					361	0,036	Außengebiet	Dreieck	0,5	0,018	117,8	0	2,13
Ram	pen Süd												
21	0+026	0+051	25	10,00	253	0,025	Fahrbahn	Ausrampe	0,9	0,023	117,8	0	2,65
											gesamte Wasser-		

gesamte
Wassermenge
Q [l/s]
Gesamtfläche Au 0,986

[ha]

Seite 1

2. Einzugsbereiche und reduzierte Flächen

Flächen			
Befestigte Flächen	Au	=	0,830 ha
Böschungen	Au	=	0,000 ha
Mulden, Bankette und Mittelstreifen	Au	=	0,138 ha
Natürliche Einzugsgebiete	Au	=	0,018 ha
Summe der undurchlässigen Flächen	Au	=	0,986 ha

3.	Qualitativ	e Gewä	isserbe	lastung			nach ATV-DVWK-M 153
Gewässer						Тур	Gewässerpunkte G
Versickerung	gewählt: G	rundwas	ser, WSZ	III B		G 25	8,0
					•		
Flächenanteile fi			Luft Li	_	Flächen	<u>Fi</u>	Abflussbelastung Bi
Flächen	Au in ha	fi	Тур	Punkte	Тур	Punkte	Bi = fi*(Li+Fi)
Fahrbahn	0,830	0,858	L 2	2	F6	35	31,74
Bankett	0,138	0,142	L 2	2	F6	35	5,26
Mulde	0,000	0,000	L 2	2	F 6	35	0,00
Mulde im Einschnitt	0,000	0,000	L 2	2	F6	35	0,00
FB im Einschnitt	0,000	0,000	L 2	2	F6	35	0,00
FB über Damm	0,000	0,000	L 2	2	F 6	35	0,00
E-Böschung	0,000	0,000	L 2	2	F 6	35	0,00
D-Böschung	0,000	0,000	L 2	2	F 6	35	0,00
Mittelstreifen	0,000	0,000	L 2	2	F 6	35	0,00
Außengebiet	0,000	0,000	L 1	1	F 1	5	0,00
	0,968	1,00	Abflussb	elastung E	B = Summ	e (Bi):	37,00
maximal zulässiger Du	ırchgangswer	t Dmax=	G/B			Dmax =	0,22
vorgesehene Behandl	ungsmassnah	nmen				Тур	Durchgangswerte Di
Anlage mit max. 9 m/h Oberflächenbeschickung D 21d Regenspende r15,1					0,2		
Durchgangswert D = Produkt aller Di: D =						0,2	
Emissionswert E = B * D : E =						7,4	
Bedingung: E < G Regenw	vasserbehand	llung ist a	usreiche	nd, da E =	7,4	< G =	8,0

Nachweis der Sedimentationsanlage (ASB)	nach ATV-DVWK-M 153		
kritische Regenabflußspende	r krit	118 l/s*ha	
Bemessungszufluß	Qb	116 l/s	
Qb = r krit * Au			
Oberflächenbeschickung	Qа	9 m/h	
		0,0025 m/s	
Wasseroberfläche	A erf	46 m2	
Wasseroberfläche	A gew	202 m2	
Verhältnis der Oberfläche Länge zur Breite ca. 3:1	Länge erf.	24,60 m	
	Breite erf.	8,20 m	
Ölauffangraum > 30 m3	t Öl	0,15 m	
V Öl = O gew * t	V ÖI	30 m3	

5. Bemessung der Tauchrohre

Die Fließgeschwindigkeit im Bereich der Einlauföffnung der Tauchrohre ist auf 0,5 m/s zu begrenzen*, um Schlammaufwirbelungen sowie eine mögliche Sogwirkung auf abgeschiedene Leichtflüssigkeiten zu vermeiden. Da es sich dabei um eine Maßnahme zur Sicherstellung der Reinigungswirkung (nicht der Regenrückhaltung) handelt, wird gemäß ATV-DVWK-M 153 der maßgeblichen Regenabflußspende die Regenspende $r_{(15,1)}$ zugrundegelegt (Sedimentationsanlage Typ D21d bzw. D25d).

Bemessungszufluß	Qb	116 l/s
Maximale Fließgeschwindigkeit im Tauchrohr	v Tauch	0,5 m/s
Erforderlicher Rohrquerschnitt	A Tauch	0,23 m2
Anzahl der Tauchrohre	Anz Tauch	1
Tauchrohre		BR DN 600
Vorhandener Rohrquerschnitt	A Tauch	0,28 m2

^{*} Appelt, V.; Dittrich, V.; Schönfeld, R.: Bemessungsgrundsätze und Erfahrungen beim Entwurf, Bau und Betrieb von Anlagen zur Behandlung, Rückhaltung und Versickerung von Oberflächenwasser hochbelasteter Straßen, Teil II; Straße + Autobahn 8/2000

Bemessung von Versickerungsbecken im Näherungsverfahren nach Arbeitsblatt DWA-A 138

St2240, Ersatzneubau Brücke über den Main-Donau-Kanal Tektur vom 28.02.2025

Auftraggeber:

StBA Nürnberg

Beckenbemessung:

Versickerungsbecken Abschnitt West

Eingabedaten:

$$V_{erf} = (A_u * 10^{-7} * r_{D(n)} - Q_S) * D * 60 * f_Z * f_A$$
 mit $Q_S = A_u * 10^{-7} * q_S$

Einzugsgebietsfläche	A _E	m^2	9.858
Abflussbeiwert gem. Tabelle 2 (DWA-A 138)	Ψ_{m}	-	1,00
undurchlässige Fläche	A_{u}	m^2	9.858
Drosselabflussspende bezogen auf A _u	q_S	l/(s ha)	8,0
Durchlässigkeitsbeiwert der Sohle	$\mathbf{k}_{f,Sohle}$	m/s	1,0E-04
Durchlässigkeitsbeiwert der Böschung	k _{f,Böschung}	m/s	0,0E+00
gewählte Länge der Sohlfläche (Rechteckbecken)	L _s	m	46,2
gewählte Breite der Sohlfläche (Rechteckbecken)	b _s	m	15,0
gewählte max. Einstauhöhe (Rechteckbecken)	z	m	0,5
gewählte Böschungsneigung (Rechteckbecken)	1:m	-	2,0
gewählte Regenhäufigkeit	n	1/Jahr	0,1
Zuschlagsfaktor	f_Z	-	1,20
Fließzeit zur Berechnung des Abminderungsfaktors	t _f	min	10
Abminderungsfaktor	f _A	-	1,00

Ergebnisse:

El gebillose.			
maßgebende Dauer des Bemessungsregens	D	min	180
maßgebende Regenspende	$r_{D,n}$	l/(s*ha)	35,4
erforderliches Speichervolumen	V _{erf}	m ³	348
vorhandenes Speichervolumen	V	m³	378
Beckenlänge an Böschungsoberkante	L _o	m	48,2
Beckenbreite an Böschungsoberkante	b _o	m	17,0
Entleerungszeit	t _E	h	3,0

Nachweis der Versickerungsrate:

vorhandene minimale Versickerungsrate	$Q_{s,min}$	m ³ /s	0,035
vorhandene maximale Versickerungsrate	$Q_{s,max}$	m ³ /s	0,035
vorhandene mittlere Versickerungsrate	$Q_{s,m}$	m³/s	0,035
gewählte Versickerungsrate	q _s *A _u	m³/s	0,008

Lizenznummer: ATV-0681-1062

Bemessung von Versickerungsbecken im Näherungsverfahren nach Arbeitsblatt DWA-A 138

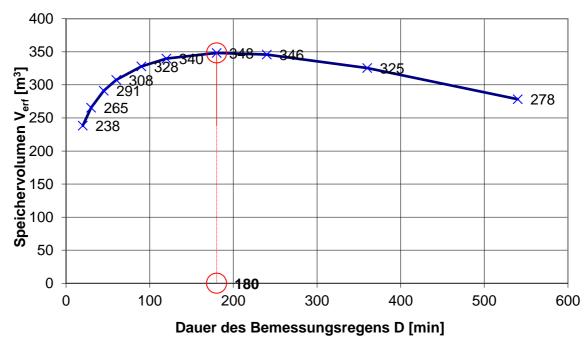
St2240, Ersatzneubau Brücke über den Main-Donau-Kanal Tektur vom 28.02.2025

Auftraggeber:

StBA Nürnberg

Beckenbemessung:

Versickerungsbecken Abschnitt West


örtliche Regendaten:

D [min]	r _{D(n)} [l/(s*ha)]
20	176,7
30	133,3
45	99,6
60	80,6
90	59,6
120	48,1
180	35,4
240	28,4
360	20,8
540	15,3

Berechnung:

V _{erf} [m ³]
238
265
291
308
328
340
348
346
325
278

Versickerungsbecken

Bemessungsprogramm ATV-A138.XLS © 05/2009 - Institut für technisch-wissenschaftliche Hydrologie GmbH Engelbosteler Damm 22, 30167 Hannover, Tel.: 0511-97193-0, Fax: 0511-97193-77, www.itwh.de Lizenznummer: ATV-0681-1062

Seite 5