1. Ermittlung der Einzugsflächen Abschnitt Bauende

		Fläche [m²]	Spitzenabflussbeiwert	Au [m²]
Teilflächen Abschnitt "Bauende" B01-BE01				
	31	362	0,9	326
	32	750	0,9	675
	33	1079	0,9	971
	34	223	0,9	201
Gesamtsumme Abschnitt		2414		2173

Tabelle 3: Abflussbeiwerte

Fahrbahnen*)	$\psi_{s} = 0.9$
sonstige befestigte horizontale Flächen (je nach Art der Befestigung)	ψ _s = 0,6 - 0,9
unbewachsene Felsböschungen aus gering geklüfteten Festgesteinen	ψ _s = 0,8

2. Berechnung Drosselvolumen Rückhalteraum (Rohr DN 1200)

Ein	gan	gsd	laten
	יישת	200	u cci i

 A_E 0,24 ha $A_{\,u}$ 0,22 ha f_z 1,20 $\boldsymbol{f}_{\text{a}}$ 1 \mathbf{Q}_{max} 2,41 für 10 l/s*ha _{AE} l/s \mathbf{Q}_{Dr}

2,0

l/s

einzuhalten, wenn das vereinfachte Verfahren nach DWA-A 117 angewendet werden soll < 200ha <60ha <10a > 2 l/(s*ha)

Ergebnis

 $V_{erf} =$ 59,68 m³

Berechnung			n=0,2 / 5a
Τr		V RR	rN*
min		m³	l/s*ha
5		26,65	350,0
10		35,59	236,7
15		40,85	183,3
20		14,30	150,8
30		49,13	113,9
45		53,21	84,8
60		56,03	68,9
90		58,70	50,9
120		59,68	41,0
180		59,11	30,2
240		56,29	24,2
360		18,40	17,8
540		32,05	13,0
720		14,58	10,5

3. Berechnung Rohrvolumen als Rückhaltespeicher

Rohrinnendurchmesser	, ,		nutzbares * Speichervolumen m³	Auslastung [%]
DN 1200	1,13	65	73,51	81,19

erforderliches Volumen für T=5a abzüglich Ablauf über Drosselmenge 59,68 m³

<

Rückstauvolumen Rohrleitung

73,51 m³

^{*} Im gewählten Rohrvolumen ist ein Luftpolster berücksichtigt.

4. Rohrauslastung

								r		ı								
Schacht				unmittelba	ırer	Q'	Gefälle	Rauhig-	Rohr-		Geschw			_	ßzeit	Zeit-	Q' *	Q
	Länge	Ared	Q	Streckenzu	fluß			keitsbei-	nenn-	Voll-	Qt/Qv	Vt/Vv	Teil-	einzeln	gesamt	bei-		mög-
von bis				von	Zufluß menge	Qgesamt		wert k _h	weite	füllung	n=x		füllung			wert	n=x	lich
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19
Nr.	m	m^2	l/s	_	l/s	l/s	‰	_	mm	m/s		_	m/s	min	min	_	l/s	l/s
G01	53,30	675	8		3,84	11,79	3,33	0.75	300	0,89	0,19	0,779	0,69	1,28	1,28	1.00	11,79	62,77
G02	55,50	073	0		3,04	11,73	0,00	0,73	300	0,03	0,10	0,773	0,03	1,20	1,20	1,00	11,73	02,11
	65,00	971	11,44		0,00	23,23	1,00	0,75	1200	1,16	0,02	0,413	0,48	2,26	3,55	1,00	23,23	1309,67
G03																		
	12,10	201	2,36		0,00	25,59	3,33	0,75	300	0,89	0,41	0,953	0,85	0,24	3,79	1,00	25,59	62,77
G04																		
	20,80	0	0,00		0,00	25,59	3,33	0,75	300	0,89	0,41	0,953	0,85	0,41	4,20	1,00	25,59	62,77
G05																		
■ D04	20,80	0	0,00		0,00	25,59	3,33	0,75	300	0,89	0,41	0,953	0,85	0,41	4,60	1,00	25,59	62,77

5. Berechnung der Sinkkastenabstände

vollständige Systemauslastung

(mit Grundlast)

$$L = \frac{Q_A}{q_s}. \qquad q_s = \psi_s \cdot r_{D,n} \cdot B_{St} \cdot \kappa / 10000. \tag{1}$$

r _{15,1} =	117,8 l/s*ha
k=	1,5
Phi=	0,9

angenommene Rinnenbreite 0,50 m -> nur "Rinne" (= Sinkkastentiefe) wird beim Extremregenereignis eingestaut

	Bemessungszufluss I/s	B [m]	s [%]	q _s [%]	Q _A [I/s] gem. Tab. REwS		Breite Rinne	Sinkkastentyp
ST 2240								
4-streifig Einseitquerneigung	0,25	16,00	4,962	2,5	1,6	6	B=0,5	Typ 500*500
4-streifig Dachprofil	0,14	9,00	4,962	2,5	1,6	11	B=0,5	Typ 500*500

angenommene Rinnenbreite 0,70 m -> Fahrbahn wird beim Extremregenereignis noch 25 cm eingestaut

	Bemessungszufluss I/s	B [m]	s [%]	q _s [%]	Q _A [I/s] gem. Tab. REwS		Breite Rinne	Sinkkastentyp
ST 2240								
4-streifig Einseitquerneigung	0,25	16,00	4,962	2,5	4	16	B=0,70	Typ 500*500
4-streifig Dachprofil	0,14	9,00	4,962	2,5	4	28	B=0,70	Typ 500*500